Skip to main content

Other AdS Spacetimes

  • Chapter
  • First Online:
AdS/CFT Duality User Guide

Part of the book series: Lecture Notes in Physics ((LNP,volume 903))

  • 3165 Accesses

Abstract

We discuss various spacetimes which often appear in AdS/CFT. We describe charged AdS black holes, the Schwarzschild-AdS black hole in the other dimensions, various branes (M-branes and D\(p\)-branes), and some other examples. Many of them are asymptotically AdS spacetimes, but some are not.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See Chap. 12 App. 3 for the simple \(S^1\) compactification.

  2. 2.

    The theory is scale invariant up to an overall scaling of the metric. An extension of such a geometry is known as the hyperscaling geometry [11].

  3. 3.

    One normally considers the \(p<5\) case because the heat capacity diverges for \(p=5\) and becomes negative for \(p>5\).

  4. 4.

    Unlike the Schwarzschild black hole, a curvature invariant such as \(R^{MNPQ}R_{MNPQ}\) does not diverge at this singularity, but the tidal force diverges there. Some branes have similar spacetime singularities. A spacetime singularity is called a s.p. (scalar polynomial) singularity if a curvature invariant has a divergence and is called a p.p. (parallelly propagated) singularity if the tidal force diverges. There are various kinds of spacetime singularities and one cannot completely classify them. Thus, in general relativity, a spacetime singularity is defined operationally as geodesic incompleteness.

  5. 5.

    When a metric takes the form \( ds^2 = - f(r) dt^2 + dr^2/g(r) +\cdots , \) the Hawking temperature is given by \( T=\sqrt{ f'(r_0)g'(r_0)}/(4\pi ) \) following the derivation in Sect. 3.2.2.

References

  1. K. Behrndt, M. Cvetic, W.A. Sabra, Nonextreme black holes of five-dimensional N=2 AdS supergravity. Nucl. Phys. B 553, 317 (1999). arXiv:hep-th/9810227

  2. P. Kraus, F. Larsen, S.P. Trivedi, The Coulomb branch of gauge theory from rotating branes. JHEP 9903, 003 (1999). arXiv:hep-th/9811120

  3. M. Cvetic et al., Embedding AdS black holes in ten-dimensions and eleven-dimensions. Nucl. Phys. B 558, 96 (1999). arXiv:hep-th/9903214

  4. J.D. Bekenstein, Nonexistence of baryon number for static black holes. Phys. Rev. D 5, 1239 (1972)

    Article  ADS  MathSciNet  Google Scholar 

  5. R.-G. Cai, K.-S. Soh, Critical behavior in the rotating D-branes. Mod. Phys. Lett. A 14, 1895 (1999). arXiv:hep-th/9812121

  6. M. Cvetic, S.S. Gubser, Phases of R charged black holes, spinning branes and strongly coupled gauge theories. JHEP 9904, 024 (1999). arXiv:hep-th/9902195

  7. D. Marolf, Black holes and branes in supergravity. arXiv:1107.1022 [hep-th]

  8. O. Aharony, O. Bergman, D.L. Jafferis, J. Maldacena, N=6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals. JHEP 0810, 091 (2008). arXiv:0806.1218 [hep-th]

  9. N. Drukker, M. Marino, P. Putrov, From weak to strong coupling in ABJM theory. Commun. Math. Phys. 306, 511 (2011). arXiv:1007.3837 [hep-th]

  10. N. Itzhaki, J.M. Maldacena, J. Sonnenschein, S. Yankielowicz, Supergravity and the large N limit of theories with sixteen supercharges. Phys. Rev. D 58, 046004 (1998). arXiv:hep-th/9802042

  11. L. Huijse, S. Sachdev, B. Swingle, Hidden Fermi surfaces in compressible states of gauge-gravity duality. Phys. Rev. B 85, 035121 (2012). arXiv:1112.0573 [cond-mat.str-el]

  12. K. Pilch, N.P. Warner, N=2 supersymmetric RG flows and the IIB dilaton. Nucl. Phys. B 594, 209 (2001). arXiv:hep-th/0004063

  13. A. Buchel, J.T. Liu, Thermodynamics of the N = 2* flow. JHEP 0311, 031 (2003). arXiv:hep-th/0305064

  14. J. Polchinski, M.J. Strassler, The string dual of a confining four-dimensional gauge theory. arXiv:hep-th/0003136

  15. I.R. Klebanov, M.J. Strassler, Supergravity and a confining gauge theory: duality cascades and \(\chi \)SB-resolution of naked singularities. JHEP 0008, 052 (2000). arXiv:hep-th/0007191

  16. S.S. Gubser, C.P. Herzog, I.R. Klebanov, A.A. Tseytlin, Restoration of chiral symmetry: a supergravity perspective. JHEP 0105, 028 (2001). arXiv:hep-th/0102172

  17. S. Kachru, X. Liu, M. Mulligan, Gravity duals of Lifshitz-like fixed points. Phys. Rev. D 78, 106005 (2008). arXiv:0808.1725 [hep-th]

  18. M. Spradlin, A. Strominger, A. Volovich, Les Houches lectures on de Sitter space. arXiv:hep-th/0110007

  19. I. Bredberg, C. Keeler, V. Lysov, A. Strominger, Cargese lectures on the Kerr/CFT correspondence. Nucl. Phys. Proc. Suppl. 216, 194 (2011). arXiv:1103.2355 [hep-th]

  20. I. Bredberg, C. Keeler, V. Lysov, A. Strominger, Wilsonian approach to fluid/gravity duality. JHEP 1103, 141 (2011). arXiv:1006.1902 [hep-th]

  21. I.R. Klebanov, A.M. Polyakov, AdS dual of the critical O(N) vector model. Phys. Lett. B 550, 213 (2002). arXiv:hep-th/0210114

  22. D.T. Son, P. Surowka, Hydrodynamics with triangle anomalies. Phys. Rev. Lett. 103, 191601 (2009). arXiv:0906.5044 [hep-th]

  23. S. Nakamura, H. Ooguri, C.-S. Park, Gravity dual of spatially modulated phase. Phys. Rev. D 81, 044018 (2010). arXiv:0911.0679 [hep-th]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Natsuume .

Appendix: Explicit form of Other AdS Spacetimes \({}^\blacklozenge \)

Appendix: Explicit form of Other AdS Spacetimes \({}^\blacklozenge \)

11.1.1 SAdS\(_{p+2}\) Black Hole

In this section, we consider black holes with planar horizon only. The SAdS\(_{p+2}\) black hole is given by

$$\begin{aligned} ds_{p+2}^2&= - f dt^2 + \frac{dr^2}{f} + \left( \frac{r}{L}\right) ^2 d{\varvec{x}}_{p}^2, \end{aligned}$$
(11.8)
$$\begin{aligned} f&= \left( \frac{r}{L}\right) ^2 \left\{ 1 - \left( \frac{r_0}{r} \right) ^{p+1} \right\} . \end{aligned}$$
(11.9)

Thermodynamic quantities are given by

$$\begin{aligned} T&= \frac{p+1}{4\pi L^2} r_0~,\end{aligned}$$
(11.10)
$$\begin{aligned} s&= \frac{1}{4 G_{p+2}} \left( \frac{r_0}{L}\right) ^{p}~,\end{aligned}$$
(11.11)
$$\begin{aligned} \varepsilon&= \frac{p}{16\pi G_{p+2} L} \left( \frac{r_0}{L} \right) ^{p+1}~,\end{aligned}$$
(11.12)
$$\begin{aligned} P&= \frac{1}{16\pi G_{p+2} L} \left( \frac{r_0}{L} \right) ^{p+1} = \frac{1}{p}\varepsilon ~. \end{aligned}$$
(11.13)

11.1.2 M-branes

Zero-temperature case   The M2-brane at zero temperature is given by

$$\begin{aligned} ds_{11}^2&= f_2^{-2/3} (-dt^2 + dx_1^2 + dx_2^2)+ f_2^{1/3} (dr^2 + r^2 d\varOmega _{7}^2), \end{aligned}$$
(11.14)
$$\begin{aligned} f_2&= 1+\left( \frac{r_2}{r}\right) ^{6}. \end{aligned}$$
(11.15)

In the near-horizon limit \(r \ll r_2\), the metric becomes

$$\begin{aligned} ds_{11}^2&\rightarrow \left( \frac{r}{r_2} \right) ^4 (-dt^2 + dx_1^2 + dx_2^2) + \left( \frac{r_2}{r} \right) ^2 (dr^2 + r^2 d\varOmega _{7}^2) \end{aligned}$$
(11.16)
$$\begin{aligned}&= \left( \frac{2{\tilde{r}}}{r_2} \right) ^2 (-dt^2 + dx_1^2 + dx_2^2) + \left( \frac{r_2}{2} \right) ^2 \frac{d{\tilde{r}}^2}{{\tilde{r}}^2} + r_2^2 d\varOmega _{7}^2, \end{aligned}$$
(11.17)

where \(r =(2{\tilde{r}} r_2)^{1/2}\). The geometry reduces to the AdS\(_4 \times S^7\) spacetime with AdS radius \(L = r_2/2\) and the \(S^7\) radius \(L_{S^7} = 2L = r_2\). Note that the AdS radius differs from the sphere radius unlike the D3-brane case.

The M5-brane at zero temperature is given by

$$\begin{aligned} ds_{11}^2&= f_5^{-1/3} (-dt^2 + d{\varvec{x}}_5^2) + f_5^{2/3} (dr^2 + r^2 d\varOmega _{4}^2), \end{aligned}$$
(11.18)
$$\begin{aligned} f_5&= 1+\left( \frac{r_5}{r}\right) ^{3}. \end{aligned}$$
(11.19)

In the near-horizon limit \(r \ll r_5\), the metric becomes

$$\begin{aligned} ds_{11}^2&\rightarrow \left( \frac{r}{r_5} \right) (-dt^2 + d{\varvec{x}}_5^2) + \left( \frac{r_5}{r} \right) ^2 (dr^2 + r^2 d\varOmega _{4}^2) \end{aligned}$$
(11.20)
$$\begin{aligned}&= \left( \frac{{\tilde{r}}}{2r_5} \right) ^2 (-dt^2 + d{\varvec{x}}_5^2) + (2r_5)^2 \frac{d{\tilde{r}}^2}{{\tilde{r}}^2} + r_5^2 d\varOmega _{4}^2, \end{aligned}$$
(11.21)

where \(r = {\tilde{r}}^2/(4r_5)\). The geometry reduces to the AdS\(_7 \times S^4\) spacetime with AdS radius \(L = 2r_5\) and the \(S^4\) radius \(L_{S^4} = L/2 = r_5\).

AdS/CFT dictionary   One can obtain the AdS/CFT dictionary for M-branes as in the D3-brane in Chap. 5 App. 2. For the M2-brane, the number of the spatial dimensions transverse to the brane is eight. Thus, the Newtonian potential is \(G_{11}\mathsf T _2/r^6\) instead of \(GM/r\) in three spatial dimensions. Using the dimensional analysis and the fact that there are \(N_c\) branes, one gets

$$\begin{aligned} r_2^6&\simeq G_{11}\mathsf T _2 \simeq N_c l_{11}^6, \end{aligned}$$
(11.22)
$$\begin{aligned} G_{11}&=: l_{11}^9, \end{aligned}$$
(11.23)

where \(l_{11}\) is the 11-dimensional Planck length. In string theory, there is the fundamental length scale, the string scale \(l_s\), and the Planck length \(l_{10}\) is not fundamental. They are related to each other by \(l_{10}^8 \simeq g_s^2 l_s^8\). However, in the 11-dimensions, it is not yet clear if there is a fundamental length scale like \(l_s\), so here we use \(l_{11}\) instead. From Eqs. (11.22) and (11.23), we get

$$\begin{aligned} \frac{r_2^9}{G_{11}} \simeq N_c^{3/2}. \end{aligned}$$
(11.24)

This is the M2 version of the first equation of Eq. (5.74).

For the M5-brane, the number of the spatial dimensions transverse to the brane is five. Thus, the Newtonian potential is \(G_{11}\mathsf T _5/r^3\), so

$$\begin{aligned} r_5^3 \simeq G_{11}\mathsf T _5 \simeq N_c l_{11}^3. \end{aligned}$$
(11.25)

Thus,

$$\begin{aligned} \frac{r_5^9}{G_{11}} \simeq N_c^{3}. \end{aligned}$$
(11.26)

If one works out numerical coefficients, the results are

$$\begin{aligned} N_c^{3/2}&= \frac{\sqrt{2} \pi ^5 (2L)^9}{16\pi G_{11}} = 12\sqrt{2} \pi \frac{L^2}{16\pi G_{4}} \quad (\text {M2}),\end{aligned}$$
(11.27)
$$\begin{aligned} N_c^3&= \frac{\pi ^5L^9}{2\cdot 16\pi G_{11}} = 3\pi ^3\frac{L^5}{16\pi G_{7}} \quad (\text {M5}). \end{aligned}$$
(11.28)

Finite-temperature case   The M2-brane at finite temperature is given by

$$\begin{aligned} ds_{11}^2&= f_2^{-2/3} (-hdt^2 + dx_1^2 + dx_2^2) + f_2^{1/3} (h^{-1}dr^2 + r^2 d\varOmega _{7}^2), \end{aligned}$$
(11.29)
$$\begin{aligned} h&= 1-\left( \frac{r_0}{r}\right) ^{6} = 1-\left( \frac{{\tilde{r}}_0}{{\tilde{r}}}\right) ^{3}, \end{aligned}$$
(11.30)

where \(r_0 =(2{\tilde{r}}_0 r_2)^{1/2}\). The M5-brane at finite temperature is given by

$$\begin{aligned} ds_{11}^2&= f_5^{-1/3} (-hdt^2 + d{\varvec{x}}_5^2) + f_5^{2/3} (h^{-1}dr^2 + r^2 d\varOmega _{4}^2), \end{aligned}$$
(11.31)
$$\begin{aligned} h&= 1-\left( \frac{r_0}{r}\right) ^{3} = 1-\left( \frac{{\tilde{r}}_0}{{\tilde{r}}}\right) ^{6}, \end{aligned}$$
(11.32)

where \(r_0 = {\tilde{r}}_0^2/(4r_5)\). In the near-horizon limit \({\tilde{r}}_0 < {\tilde{r}} \ll L\), the M2 and M5-branes reduce to the SAdS\(_4\) and SAdS\(_7\) black holes. One can then use the results of thermodynamic quantities for the SAdS\(_{p+2}\) black hole. For example, the energy density for the M2-brane is given by

$$\begin{aligned} \varepsilon \simeq \frac{1}{G_4 L} \left( \frac{r_0}{L} \right) ^{3} \simeq \frac{L^9}{G_{11}} \left( \frac{r_0}{L^2} \right) ^{3} \simeq N_c^{3/2} T^3, \end{aligned}$$
(11.33)

where \(1/G_4 \simeq L^7/G_{11}\). For the M5-brane,

$$\begin{aligned} \varepsilon \simeq \frac{1}{G_7 L} \left( \frac{r_0}{L} \right) ^{6} \simeq \frac{L^9}{G_{11}} \left( \frac{r_0}{L^2} \right) ^{6} \simeq N_c^3 T^6, \end{aligned}$$
(11.34)

where \(1/G_7 \simeq L^4/G_{11}\). If one works out numerical coefficients, the results are

$$\begin{aligned} s&= \sqrt{2} \pi ^2 \left( \frac{2}{3}\right) ^3 N_c^{3/2} T^2, \end{aligned}$$
(11.35)
$$\begin{aligned} \varepsilon&= \sqrt{2} \pi ^2 \left( \frac{2}{3}\right) ^4 N_c^{3/2} T^3, \end{aligned}$$
(11.36)

for the M2-brane, and

$$\begin{aligned} s&= 3\pi ^3 \left( \frac{2}{3}\right) ^7 N_c^{3} T^5~, \end{aligned}$$
(11.37)
$$\begin{aligned} \varepsilon&= \frac{5\pi ^3}{2} \left( \frac{2}{3}\right) ^7 N_c^{3} T^6~, \end{aligned}$$
(11.38)

for the M5-brane.

11.1.3 D\(p\)-brane

Zero-temperature case   The D\(p\)-brane at zero temperature is given by

$$\begin{aligned} ds_{10}^2&= Z_p^{-1/2} (-dt^2 + d{\varvec{x}}_p^2) + Z_p^{1/2} (dr^2 + r^2 d\varOmega _{8-p}^2), \end{aligned}$$
(11.39)
$$\begin{aligned} e^{-2\phi }&= Z_p^{(p-3)/2}, \end{aligned}$$
(11.40)
$$\begin{aligned} Z_p&= 1+ \left( \frac{r_p}{r} \right) ^{7-p}. \end{aligned}$$
(11.41)

When \(p\ne 3\), the dilaton \(\phi \) has a nontrivial behavior. In the near-horizon limit \(r \ll r_p\), the metric becomes

$$\begin{aligned} ds_{10}^2&\rightarrow \left( \frac{r}{r_p}\right) ^{(7-p)/2} ( -dt^2 + d{\varvec{x}}_p^2 ) + \frac{dr^2}{(\frac{r}{r_p})^{(7-p)/2}} + r_p^2 \left( \frac{r}{r_p} \right) ^{(p-3)/2} d\varOmega _{8-p}^2 \end{aligned}$$
(11.42)
$$\begin{aligned}&= \left( \frac{r}{r_p}\right) ^{(p-3)/2} \left\{ \left( \frac{r}{r_p}\right) ^{5-p} ( - dt^2 + d{\varvec{x}}_p^2 ) + \frac{dr^2}{(\frac{r}{r_p})^2} + r_p^2 d\varOmega _{8-p}^2 \right\} . \end{aligned}$$
(11.43)

The metric is invariant up to an overall coefficient under a scaling:

$$\begin{aligned} x^\mu \rightarrow a x^\mu , \quad r \rightarrow a^{-2/(5-p)} r, \quad ds^2 \rightarrow a^{-(p-3)/(5-p)} ds^2. \end{aligned}$$
(11.44)

AdS/CFT dictionary   One can obtain the AdS/CFT dictionary for the D\(p\)-branes as in the D3-brane in Chap. 5 App. 2. For the D\(p\)-brane, the number of the spatial dimensions transverse to the brane is \((9-p)\). Thus, the Newtonian potential is \(G_{10}\mathsf T _p/r^{7-p}\). One thus obtains

$$\begin{aligned} r_p^{7-p}&\simeq g_s N_c l_s^{7-p}, \end{aligned}$$
(11.45)
$$\begin{aligned} G_{10}&\simeq g_s^2 l_s^8, \end{aligned}$$
(11.46)
$$\begin{aligned} g_s\, l_s^{p-3}&\simeq g_\text {YM}^2, \end{aligned}$$
(11.47)

where the last two expressions are Eq. (5.10). If one works out numerical coefficients, the results are

$$\begin{aligned} r_p^{7-p}&= \frac{(2\pi )^{7-p}}{(7-p) \varOmega _{8-p}} g_s N_c l_s^{7-p}, \end{aligned}$$
(11.48)
$$\begin{aligned} 16\pi G_{10}&= (2\pi )^7 g_s^2 l_s^8, \end{aligned}$$
(11.49)
$$\begin{aligned} 2(2\pi )^{p-2}\, g_s\, l_s^{p-3}&= g_\text {YM}^2. \end{aligned}$$
(11.50)

When \(p=3\), Eqs. (11.48)–(11.50) reduces to Eq. (5.74) for the D3-brane.

Finite-temperature case   The D\(p\)-brane at finite temperature is given by

$$\begin{aligned} ds_{10}^2&= Z_p^{-1/2} (-h dt^2 + d{\varvec{x}}_p^2) + Z_p^{1/2} (h^{-1}dr^2 + r^2 d\varOmega _{8-p}^2), \end{aligned}$$
(11.51)
$$\begin{aligned} h&= 1-\left( \frac{r_0}{r}\right) ^{7-p}, \end{aligned}$$
(11.52)

(in the so-called string metric). Thermodynamic quantities in the near-horizon limit are given by

$$\begin{aligned} T&= \frac{7-p}{4\pi }\frac{r_0^{(5-p)/2}}{r_p^{(7-p)/2}},\end{aligned}$$
(11.53)
$$\begin{aligned} s&= e^{-2\phi } \frac{a}{4G_{10}} = \frac{1}{4 G_{10}} \varOmega _{8-p} (r_p r_0)^{(7-p)/2} r_0,\end{aligned}$$
(11.54)
$$\begin{aligned} \varepsilon&= \frac{9-p}{32\pi G_{10}} \varOmega _{8-p} r_0^{7-p},\end{aligned}$$
(11.55)
$$\begin{aligned} P&= \frac{5-p}{9-p} \varepsilon ,\end{aligned}$$
(11.56)
$$\begin{aligned} C&:= \frac{\partial \varepsilon }{\partial T} = \frac{9-p}{4 G_{10}(5-p)} \varOmega _{8-p} (r_p r_0)^{(7-p)/2} r_0. \end{aligned}$$
(11.57)

Here, the area law of the black hole entropy is modified as

$$\begin{aligned} s = \left. e^{-2\phi } \frac{a}{4G_{10}} \right| _{r=r_0} \end{aligned}$$
(11.58)

since the dilaton plays the role of the effective Newton’s constant (Sect. 5.2.5).

11.1.4 RN-AdS Black Holes

The RN-AdS\(_5\) black hole is given by

$$\begin{aligned} ds_5^2&= - f dt^2 + \frac{dr^2}{f} + \left( \frac{r}{L}\right) ^2 d{\varvec{x}}_3^2, \end{aligned}$$
(11.59)
$$\begin{aligned} f&= \left( \frac{r}{L}\right) ^2 \left\{ 1 - \left( \frac{r_+}{r} \right) ^2 \right\} \left\{ 1 - \left( \frac{r_-}{r} \right) ^2 \right\} \left\{ 1 + \frac{r_+^2+r_-^2}{r^2} \right\} , \end{aligned}$$
(11.60)
$$\begin{aligned} A_0&= - \frac{r_+}{L^2} \sqrt{3\alpha ^2(1+\alpha ^2)} \left( \frac{r_+^2}{r^2} - 1\right) , \end{aligned}$$
(11.61)

(\(\alpha :=r_-/r_+\)). The horizons are located at \(r=r_+, r_-\).

Thermodynamic quantities are given by

$$\begin{aligned} T&= \frac{r_+}{2\pi L^2}(2 - \alpha ^2 - \alpha ^4),\end{aligned}$$
(11.62)
$$\begin{aligned} \varOmega&= - \frac{V_3}{16\pi G_5 L} \left( \frac{r_+}{L} \right) ^4 (1 + \alpha ^2 + \alpha ^4),\end{aligned}$$
(11.63)
$$\begin{aligned} s&= - \frac{1}{V_3} \left( \frac{\partial \varOmega }{\partial T} \right) _{V_3, \mu } = \frac{1}{4 G_5}\left( \frac{r_+}{L}\right) ^3,\end{aligned}$$
(11.64)
$$\begin{aligned} \mu&= \left. A_0 \right| _{r\rightarrow \infty } = \frac{r_+}{L^2} \sqrt{ 3\alpha ^2(1+ \alpha ^2) },\end{aligned}$$
(11.65)
$$\begin{aligned} \rho&= - \frac{1}{V_3} \left( \frac{\partial \varOmega }{\partial \mu } \right) _{T, V_3} = \frac{1}{8\pi G_5} \left( \frac{r_+}{L} \right) ^3 \sqrt{ 3\alpha ^2(1+ \alpha ^2) },\end{aligned}$$
(11.66)
$$\begin{aligned} \varepsilon&= \frac{\varOmega }{V_3} + Ts + \mu \rho = \frac{3}{16\pi G_5 L} \left( \frac{r_+}{L} \right) ^4 (1 + \alpha ^2 + \alpha ^4),\end{aligned}$$
(11.67)
$$\begin{aligned} P&= - \frac{\varOmega }{V_3} = \frac{1}{3} \varepsilon . \end{aligned}$$
(11.68)

To compute thermodynamic quantities, one has to fix, e.g., \(\mu \). To do so, rewrite \(d\mu =0\) as the condition for \(r_+\) and \(\alpha \):

$$\begin{aligned} d\mu = \frac{\partial \mu }{\partial r_+} dr_+ + \frac{\partial \mu }{\partial \alpha } d\alpha = 0 \rightarrow d\alpha = - \frac{\alpha (1+\alpha ^2)}{1+2\alpha ^2} \frac{dr_+}{r_+}. \end{aligned}$$
(11.69)

Imposing this condition, one gets

$$\begin{aligned} d\varOmega&= \frac{\partial \varOmega }{\partial r_+} dr_+ + \frac{\partial \varOmega }{\partial \alpha } d\alpha = - \frac{V_3}{8\pi G_5 L^2} \left( \frac{r_+}{L} \right) ^3 (2 + \alpha ^2 + \alpha ^4) dr_+,\end{aligned}$$
(11.70)
$$\begin{aligned} dT&= \frac{\partial T}{\partial r_+} dr_+ + \frac{\partial T}{\partial \alpha } d\alpha = \frac{1}{2\pi L^2} (2 + \alpha ^2 + \alpha ^4) dr_+. \end{aligned}$$
(11.71)

Thus,

$$\begin{aligned} s = - \frac{1}{V_3} \left( \frac{\partial \varOmega }{\partial T} \right) _{V_3, \mu } = \frac{1}{4 G_5}\left( \frac{r_+}{L}\right) ^3. \end{aligned}$$
(11.72)

Similarly, the RN-AdS\(_4\) black hole is given by

$$\begin{aligned} ds_4^2&= - f dt^2 + \frac{dr^2}{f} + \left( \frac{r}{L}\right) ^2 d{\varvec{x}}_2^2, \end{aligned}$$
(11.73)
$$\begin{aligned} f&= \left( \frac{r}{L}\right) ^2 \left( 1 - \frac{r_+}{r} \right) \left( 1 - \frac{r_-}{r} \right) \left( 1 + \frac{r_++r_-}{r} + \frac{r_+^2+r_+ r_-+r_-^2}{r^2} \right) , \end{aligned}$$
(11.74)
$$\begin{aligned} A_0&= - \frac{2r_+}{L^2} \sqrt{ \alpha (1+\alpha +\alpha ^2) } \left( \frac{r_+}{r}-1\right) , \end{aligned}$$
(11.75)

(\(\alpha :=r_-/r_+\)). Thermodynamic quantities are given by

$$\begin{aligned} T&= \frac{r_+}{4\pi L^2}(3 - \alpha - \alpha ^2 - \alpha ^3),\end{aligned}$$
(11.76)
$$\begin{aligned} \varOmega&= - \frac{V_2}{16\pi G_4 L} \left( \frac{r_+}{L} \right) ^3 (1 + \alpha + \alpha ^2 + \alpha ^3),\end{aligned}$$
(11.77)
$$\begin{aligned} s&= - \frac{1}{V_2} \left( \frac{\partial \varOmega }{\partial T} \right) _{V_2, \mu } = \frac{1}{4 G_4}\left( \frac{r_+}{L}\right) ^2,\end{aligned}$$
(11.78)
$$\begin{aligned} \mu&= \left. A_0 \right| _{r\rightarrow \infty } = \frac{2r_+}{L^2} \sqrt{ \alpha (1+ \alpha +\alpha ^2) },\end{aligned}$$
(11.79)
$$\begin{aligned} \rho&= - \frac{1}{V_2} \left( \frac{\partial \varOmega }{\partial \mu } \right) _{T, V_2} = \frac{1}{8\pi G_4} \left( \frac{r_+}{L} \right) ^2 \sqrt{ \alpha (1+ \alpha +\alpha ^2) },\end{aligned}$$
(11.80)
$$\begin{aligned} \varepsilon&= \frac{\varOmega }{V_2} + Ts + \mu \rho = \frac{1}{8\pi G_4 L} \left( \frac{r_+}{L} \right) ^3 (1 + \alpha + \alpha ^2 + \alpha ^3),\end{aligned}$$
(11.81)
$$\begin{aligned} P&= - \frac{\varOmega }{V_2} = \frac{1}{2} \varepsilon . \end{aligned}$$
(11.82)

11.1.5 \(d=5\) R-charged Black Hole and Holographic Current Anomaly

The \(d=5\) R-charged black hole is the solution of the five-dimensional \(\fancyscript{N}=2\) gauged \(U(1)^3\) supergravity:

$$\begin{aligned} \mathsf S&= \frac{1}{16\pi G_5} \int d^{5}x\, \sqrt{-g} \left( R - \frac{L^2}{2}G_{ij} F^i_{MN}F^{MN~j} - G_{ij} \partial _M X^i \partial ^M X^j + \frac{4}{L^2}\, \sum _{i=1}^3 \frac{1}{X^i} \right. \nonumber \\&\qquad \qquad \qquad \qquad \left. + \frac{L^3}{24\sqrt{-g}}\, \varepsilon ^{ABCDE}\,\varepsilon _{ijk}\, F^i_{AB} F^j_{CD} A^k_{E} \right) . \end{aligned}$$
(11.83)

Here, \(F^i_{MN}\) are the field strength of the three \(U(1)\) gauge fields \(A^i_M\) (\(i= 1, 2, 3\)). The fields \(X^i\) (\(i=1, 2, 3\)) represent three real scalar fields which are not independent but are subject to the constraint \(X^1\, X^2\, X^3 = 1\), and their “moduli space metric” \(G_{ij}\) is given by

$$\begin{aligned} G_{ij} = \frac{1}{2} \text {diag}[(X^1)^{-2},\, (X^2)^{-2},\, (X^3)^{-2}]. \end{aligned}$$
(11.84)

Note that \(\varepsilon ^{ABCDE}\) is the Levi-Civita symbol not the Levi-Civita tensor: it is purely numerical and takes values \(\pm 1\).

The solution is given by

$$\begin{aligned} ds_5^2&= - \fancyscript{H}^{-2/3}f dt^2 + \fancyscript{H}^{1/3} f^{-1} dr^2 + \fancyscript{H}^{1/3} \left( \frac{r}{L}\right) ^2 d{\varvec{x}}_3^2, \end{aligned}$$
(11.85)
$$\begin{aligned} A_0^i&= - \frac{\tilde{\kappa _i}}{L} \left[ \left( \frac{r_+}{r}\right) ^2\frac{1}{H_i} - \frac{1}{1+\kappa _i} \right] ,\end{aligned}$$
(11.86)
$$\begin{aligned} X_i&= \frac{\fancyscript{H}^{1/3}}{H_i}, \end{aligned}$$
(11.87)

where the outer horizon is located at \(r=r_+\), and

$$\begin{aligned} H_i&:= 1+ \kappa _i \left( \frac{r_+}{r}\right) ^2, \quad \fancyscript{H} := H_1 H_2 H_3, \end{aligned}$$
(11.88)
$$\begin{aligned} f&:= \left( \frac{r}{L}\right) ^2 \left[ \fancyscript{H} - \left( \frac{r_+}{r}\right) ^4 \prod _{i=1}^3 (1+\kappa _i) \right] ,\end{aligned}$$
(11.89)
$$\begin{aligned} \tilde{\kappa }_i&:= \frac{r_+}{L} \sqrt{\kappa _i} \prod _{l=1}^3 (1+\kappa _l)^{1/2}. \end{aligned}$$
(11.90)

Thermodynamic quantities are given byFootnote 5

$$\begin{aligned} T&= \frac{2 + \kappa _1 + \kappa _2 + \kappa _3 - \kappa _1\kappa _2\kappa _3}{2\sqrt{(1+\kappa _1)(1+\kappa _2)(1+\kappa _3)}}T_0, \end{aligned}$$
(11.91)
$$\begin{aligned} s&= \frac{\pi ^2 N_c^2 T_0^3}{2} \prod _{i=1}^3 (1+\kappa _i)^{1/2},\end{aligned}$$
(11.92)
$$\begin{aligned} \mu _i&= \left. A_0^i \right| _{r\rightarrow \infty } =\pi T_0 \frac{\sqrt{\kappa _i} }{1 + \kappa _i} \prod _{l=1}^3 (1+\kappa _l)^{1/2}, \end{aligned}$$
(11.93)
$$\begin{aligned} \rho _i&= \frac{\pi N_c^2 T_0^3}{4}~\sqrt{\kappa _i} \prod _{l=1}^3 (1+\kappa _l)^{1/2},\end{aligned}$$
(11.94)
$$\begin{aligned} \varepsilon&= \frac{3 \pi ^2 N_c^2 T_0^4}{8} \prod _{i=1}^3 (1+\kappa _i),\end{aligned}$$
(11.95)
$$\begin{aligned} P&= \frac{1}{3} \varepsilon , \end{aligned}$$
(11.96)

where \(T_0:= r_+/(\pi L^2)\).

Equal-charge case   The scalar fields are constant \(X^i=1\) when \(F^i_{MN} = F_{MN}/\sqrt{3}\). Then, the action becomes

$$\begin{aligned} \mathsf S&= \frac{1}{16\pi G_5} \int d^{5}x\, \left\{ \sqrt{-g} \left( R + \frac{12}{L^2}-\frac{L^2}{4} F_{MN}F^{MN} \right) + \frac{L^3}{12\sqrt{3}}\, \varepsilon ^{ABCDE}\, F_{AB} F_{CD} A_{E} \right\} . \end{aligned}$$
(11.97)

The action (11.97) contains the Chern-Simons term . We consider the electric solution, so the Chern-Simons term does not affect the solution. Then, the R-charged black hole reduces to the RN-AdS\(_5\) black hole.

However, the Chern-Simons term has an important consequence. Because the Chern-Simons term explicitly contains the gauge potential \(A_E\), the bulk action is not gauge invariant at the AdS boundary. From the boundary point of view, this gives the current anomaly .

The \(\fancyscript{N}=4\ \mathrm{SYM}\) has the global \(\textit{SO}(6)\) R-symmetry, so the theory has conserved currents. When the SYM is coupled with the external gauge fields for the currents, it is known that the R-symmetry becomes anomalous and the currents are not conserved. In the present case, we pick up a \(U(1)\) subgroup of the R-symmetry, and we have a \(U(1)\) current. Since we have the bulk Maxwell field, the SYM has the external \(U(1)\) gauge field for the current. But the bulk Chern-Simons term spoils the bulk gauge invariance and the current is not conserved as we see below.

The equation of motion for the Maxwell field is given by

$$\begin{aligned} \partial _N \left( \sqrt{-g} F^{MN} \right) + \frac{L}{4\sqrt{3}} \varepsilon ^{MABCD}\,F_{AB} F_{CD} = 0. \end{aligned}$$
(11.98)

Using the GKP-Witten relation, one can show

$$\begin{aligned} \langle J^\mu \rangle _s&= \frac{\delta \underline{\mathsf{S }}}{\delta A_\mu ^{(0)}} \end{aligned}$$
(11.99)
$$\begin{aligned}&= \left. \frac{L^2}{16\pi G_5} \left[ \sqrt{-g} F^{\mu r} + \frac{L}{3\sqrt{3}} \varepsilon ^{r\mu \nu \rho \sigma }\,A_{\nu }F_{\rho \sigma } \right] \right| _{r\rightarrow \infty }. \end{aligned}$$
(11.100)

The first term is essentially the same as Eqs. (10.33) and (10.34). Substituting Eq. (11.100) into the \(r\)-component of Eq. (11.98), one gets

$$\begin{aligned} \partial _\mu \langle J^\mu \rangle _s = -\frac{1}{16\pi G_5} \frac{L^3}{12\sqrt{3}} \varepsilon ^{\mu \nu \rho \sigma }\,F_{\mu \nu }F_{\rho \sigma }, \end{aligned}$$
(11.101)

where \(\varepsilon ^{\mu \nu \rho \sigma }=\varepsilon ^{r\mu \nu \rho \sigma }\). Thus, the current is not conserved.

See, e.g., Refs. [22, 23] for phenomenological applications of the anomaly.

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Natsuume, M. (2015). Other AdS Spacetimes. In: AdS/CFT Duality User Guide. Lecture Notes in Physics, vol 903. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55441-7_11

Download citation

Publish with us

Policies and ethics