• Makoto Natsuume
Part of the Lecture Notes in Physics book series (LNP, volume 903)


In this chapter, we shall describe an overall picture of the AdS/CFT duality. Many terms appear below, but we will explain each in later chapters, so readers should not worry about them too much for the time being.


Black Hole Gauge Theory Supersymmetric Gauge Theory Transport Coefficient Conformal Field Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    J.M. Maldacena, The large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys. 2, 231 (1998). arXiv:hep-th/9711200
  2. 2.
    C.W. Misner, K.S. Thorne, J.A. Wheeler, Gravitation (W.H. Freeman, New York, 1973)Google Scholar
  3. 3.
    O. Aharony, S.S. Gubser, J. Maldacena, H. Ooguri, Y. Oz, Large N field theories, string theory and gravity. Phys. Rep. 323, 183 (2000). arXiv:hep-th/9905111
  4. 4.
    M.B. Green, J.H. Schwarz, E. Witten, Superstring Theory (Cambridge University Press, Cambridge, 1987)Google Scholar
  5. 5.
    J. Polchinski, String Theory (Cambridge University Press, Cambridge, 1998)Google Scholar
  6. 6.
    B. Zwiebach, A First Course in String Theory, 2nd edn. (Cambridge University Press, Cambridge, 2009)Google Scholar
  7. 7.
    K. Becker, M. Becker, J.H. Schwarz, String Theory and M-theory: A Modern Introduction (Cambridge University Press, Cambridge, 2007)Google Scholar
  8. 8.
    E. Kiritsis, String Theory in a Nutshell (Princeton University Press, Princeton, 2007)Google Scholar
  9. 9.
    C.V. Johnson, D-branes (Cambridge University Press, Cambridge, 2003)Google Scholar
  10. 10.
    B.F. Schutz, A First Course in General Relativity, 2nd edn. (Cambridge University Press, Cambridge, 2009)Google Scholar
  11. 11.
    A. Zee, Einstein Gravity in a Nutshell (Princeton University Press, Princeton, 2013)Google Scholar
  12. 12.
    R.M. Wald, General Relativity (University of Chicago Press, Chicago, 1984)Google Scholar
  13. 13.
    E. Papantonopoulos (ed.), From Gravity to Thermal Gauge Theories: The AdS/CFT Correspondence. Lecture Notes in Physics, vol. 828 (Springer, Berlin, 2011)Google Scholar
  14. 14.
    G. Horowitz (ed.), Black Holes in Higher Dimensions (Cambridge University Press, Cambridge, 2012)Google Scholar
  15. 15.
    J. Casalderrey-Solana, H. Liu, D. Mateos, K. Rajagopal, U.A. Wiedemann, Gauge/string duality, hot QCD and heavy ion collisions. arXiv:1101.0618 [hep-th]
  16. 16.
    O. DeWolfe, S.S. Gubser, C. Rosen, D. Teaney, Heavy ions and string theory. arXiv:1304.7794 [hep-th]
  17. 17.
    S.A. Hartnoll, Lectures on holographic methods for condensed matter physics. Class. Quantum Gravity 26, 224002 (2009). arXiv:0903.3246 [hep-th]
  18. 18.
    J. McGreevy, Holographic duality with a view toward many-body physics. Adv. High Energy Phys. 2010, 723105 (2010). arXiv:0909.0518 [hep-th]
  19. 19.
    N. Iqbal, H. Liu, M. Mezei, Lectures on holographic non-Fermi liquids and quantum phase transitions. arXiv:1110.3814 [hep-th]

Copyright information

© Springer Japan 2015

Authors and Affiliations

  1. 1.Theory Center, Institute of Particle & Nuclear StudiesHigh Energy Accelerator Research Organization (KEK)TsukubaJapan

Personalised recommendations