Skip to main content

Signal Processing Model of Human Auditory System

  • Chapter
  • First Online:
Neurally Based Measurement and Evaluation of Environmental Noise

Part of the book series: Mathematics for Industry ((MFI,volume 20))

Abstract

To evaluate environmental noise, we need to use methods based on functioning of our auditory system. In this chapter, basics of human auditory system are described. First, the ear sensitivity of the human ear from a sound source to the auditory system consisting of the external canal, eardrum, bone chain with oval window, auditory nerve, cochlear nucleus, thalamus, brain stem, and cortex, and signal processing model for evaluation of environmental noise are described. Second, brain responses in relation to basic perception such as loudness and annoyance are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aibara R, Welsh JT, Puria S, Goode RL (2001) Human middle-ear sound transfer function and cochlear input impedance. Hear Res 152:100–109

    Google Scholar 

  • Albeck Y, Konishi M (1995) Responses of neurons in the auditory pathway of the barn owl to partially correlated binaural signals. J Neurophysiol 74:1689–1700

    Google Scholar 

  • Ando Y (1985) Concert hall acoustics. Springer, Heidelberg

    Google Scholar 

  • Ando Y (1998) Architectural acoustics: blending sound sources, sound fields, and listeners. AIP Press/Springer, New York

    Google Scholar 

  • Ando Y (2001) A theory of primary sensations and spatial sensations measuring environmental noise. J Sound Vib 241:3–18

    Google Scholar 

  • Ando Y (2002) Correlation factors describing primary and spatial sensations of sound fields. J Sound Vib 258:405–417

    Google Scholar 

  • Ando Y, Chen C (1996) On the analysis of autocorrelation function of a-waves on the left and right cerebral hemispheres and in relation to the time delay of single sound reflection. J Architec Plan Env Eng 488:67–73

    Google Scholar 

  • Ando Y, Hosaka I (1983) Hemispheric difference in evoked potentials to spatial sound field stimuli. J Acoust Soc Am 74(S1):S64–S65

    Google Scholar 

  • Ando Y, Kang SH, Nagamatsu H (1987) On the auditory-evoked potentials in relation to the IACC of sound field. J Acoust Soc Jpn (E) 8:183–190

    Google Scholar 

  • Ando Y, Yamamoto K, Nagamastu H, Kang SH (1991) Auditory brainstem response (ABR) in relation to the horizontal angle of sound incidence. Acoust Lett 15:57–64

    Google Scholar 

  • Ando Y, Sato S, Sakai H (1999) Fundamental subjective attributes of sound fields based on the model of auditory brain system. In: Sendra JJ (ed) Computational acoustics in architecture. WIT Press, Southampton, pp 63–99

    Google Scholar 

  • Bak CK, Lebech J, Saermark K (1985) Dependence of the auditory evoked magnetic field (100 msec signal) of the human brain on the intensity of the stimulus. Electroenceph Clin Neurophysiol 61:141–149

    Google Scholar 

  • Berglund B, Berglund U, Lindvall T (1975) Scaling loudness, noisiness, and annoyance of aircraft noise. J Acoust Soc Am 57:930–934

    Google Scholar 

  • Bilsen FA (1966) Repetition pitch: monaural interaction of a sound with the repetition of the same, but phase shifted sound. Acustica 17:295–300

    Google Scholar 

  • Bilsen FA, Ritsma RJ (1969) Repetition pitch and its implication for hearing theory. Acustica 22:63–73

    Google Scholar 

  • Bilsen FA, ten Kate JH, Buunen TJF, Raatgever J (1975) Responses of single units in the cochlear nucleus of the cat to cosine noise. J Acoust Soc Am 58:858–866

    Google Scholar 

  • Bjӧrkman M, Rylander R (1997) Maximum noise levels in city traffic. J Sound Vib 205:513–516

    Google Scholar 

  • Blauert J (ed) (1996) Spatial hearing. The MIT Press, Cambridge

    Google Scholar 

  • Blauert J, Lindemann W (1986) Spatial mapping of intracranical auditory events for various degrees of interaural coherence. J Acoust Soc Am 79:806–813

    Google Scholar 

  • Brand A, Behrend O, Marquardt T, McAlpine D, Grothe B (2002) Precise inhibition is essential for microsecond interaural time difference coding. Nature 417:543–547

    Google Scholar 

  • Budd TW, Hall DA, Gonçalves MS, Akeroyd MA, Foster JR, Palmer AR, Head K, Summerfield AQ (2003) Binaural specialisation in human auditory cortex: an fMRI investigation of interaural correlation sensitivity. Neuroimage 20:1783–1794

    Google Scholar 

  • Butler RA, Belundiuk K (1977) Spectral cues utilized in the location of sound in the median sagittal plane. J Acoust Soc Am 61:1264–1269

    Google Scholar 

  • Cansino S, Ducorps A, Ragot R (2003) Tonotopic cortical representation of periodic complex sounds. Hum Brain Mapp 20:71–81

    Google Scholar 

  • Cariani PA (2001) Neural timing nets. Neural Netw 14:737–753

    Google Scholar 

  • Cariani PA, Delgutte B (1996a) Neural correlates of the pitch of complex tones. I. Pitch and pitch salience. J Neurophysiol 76:1698–1716

    Google Scholar 

  • Cariani PA, Delgutte B (1996b) Neural correlates of the pitch of complex tones. II. Pitch shift, pitch ambiguity, phase invariance, pitch circularity, rate pitch, and the dominance region for pitch. J Neurophysiol 76:1717–1734

    Google Scholar 

  • Carlyon RP, Moore BCJ (1984) Intensity discrimination: a severe departure from Weber’s law. J Acoust Soc Am 76:1369–1376

    Google Scholar 

  • Chait M, Poeppel D, Cheveigne A, Simon JZ (2005) Human auditory cortical processing of changes in interaural correlation. J Neurosci 25:8518–8527

    Google Scholar 

  • Chandrasekaran B, Kraus N (2010) The scalp-recorded brainstem response to speech: neural origins and plasticity. Psychophysiology 47:36–246

    Google Scholar 

  • Chapman RM, Ilmoniemi RJ, Barbanera S, Romani GL (1984) Selective localization of alpha brain activity with neuromagnetic measurements. Electroencephalogr Clin Neurophysiol 58:569–572

    Google Scholar 

  • Chen C, Ando Y (1996) On the relationship between the autocorrelation function of a-waves on the left and right cerebral hemispheres and subjective preference for the reverberation time of music sound field. J Architec Plan Env Eng 489:73–80

    Google Scholar 

  • Colburn HS (1977) Theory of binaural interaction based on auditory-nerve data. II. Detection of tones in noise. J Acoust Soc Am 61:525–533

    Google Scholar 

  • D’Angelo WR, Sterbing SJ, Ostapoff EM, Kuwada S (2003) Effects of ampli-tude modulation on the coding of interaural time differences of low-frequency sounds in the inferior colliculus. II. Neural mechanisms. J Neurophysiol 90:2827–2836

    Google Scholar 

  • Denham S (2005) Pitch detection of dynamic iterated rippled noise by humans and a modified auditory model. Biosystems 79:199–206

    Google Scholar 

  • Dinse HR, Krüger K, Akhavan AC, Spengler F, Schüoner G, Schreiner CE (1997) Low-frequency oscillations of visual, auditory and somatosensory cortical neurons evoked by sensory stimulation. Int J Psychophysiol 26:205–227

    Google Scholar 

  • Elberling C, Bak C, Kofoed B, Lebech J, Sarmark G (1982) Auditory magnetic fields from the human cerebral cortex: location and strength of an equivalent current dipole. Acta Neurol Scand 65:553–569

    Google Scholar 

  • Fastl H, Stoll G (1979) Scaling of pitch strength. Hear Res 1:293–301

    Google Scholar 

  • Fay RR, Yost WA, Coombs S (1983) Psychophysics and neurophysiology of repetition noise processing in a vertebrate auditory system. Hear Res 12:31–55

    Google Scholar 

  • Fujioka T, Ross B, Okamoto H, Takeshima Y, Kakigi R, Pantev C (2003) Tonotopic representation of missing fundamental complex sounds in the human auditory cortex. Eur J Neurosci 18:432–440

    Google Scholar 

  • Gardner MB, Gardner RS (1973) Problem of localization in the median plane: Effect of pinna cavity occlusion. J Acoust Soc Am 53:400–408

    Google Scholar 

  • Goldstein JL (1974) Is the power law simply related to the driven spike response rate from the whole auditory nerve? In: Moskowitz HR, Scharf B, Stevens JC (eds) Sensation and measurement. Reidel, Dordrecht, pp 223–229

    Google Scholar 

  • Greenwood DD (1961a) Auditory masking and the critical band. J Acoust Soc Am 33:484–502

    Google Scholar 

  • Greenwood DD (1961b) Critical bandwidth and the frequency of the basilar membrane. J Acoust Soc Am 33:1344–1356

    Google Scholar 

  • Gullikson H (1956) A least squares solution for paired comparisons with incomplete data. Psychometrika 21:125–134

    Google Scholar 

  • Hämäläinen MS, Hari R, Ilmoniemi RJ, Knuutila J, Lounasmaa OV (1993) Magnetoencephalography? Theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev Mod Phys 65:413–497

    Google Scholar 

  • Hart HC, Hall DA, Palmer AR (2003) The sound-level-dependent growth in the extent of fMRI activation in Heschl’s gyrus is different for low- and high-frequency tones. Hear Res 179:104–112

    Google Scholar 

  • Hellman RP (1982) Loudness, annoyance and noisiness produced by single-tone-noise complexes. J Acoust Soc Am 72:62–73

    Google Scholar 

  • Inoue M, Ando Y, Taguti T (2001) The frequency range applicable to pitch identification based upon the autocorrelation function model. J Sound Vib 241:105–116

    Google Scholar 

  • ISO 226:2003 Acoustics—normal equal-loudness-level contours

    Google Scholar 

  • Jeffres LA (1948) A place theory of sound localization. J Comp Physiol Psych 61:468–486

    Google Scholar 

  • Jeffress LA, Blodgett HC, Deatherage BH (1962) Effects of interaural correlation on the precision of centering a noise. J Acoust Soc Am 34:1122–1123

    Google Scholar 

  • Jesteadt W (1980) An adaptive procedure for subjective judgments. Percept Psychophys 28:85–88

    Google Scholar 

  • Katsuki Y, Sumi T, Uchiyama H, Watanabe T (1958) Electric responses of auditory neurons in cat to sound stimulation. J Neurophysiol 21:569–588

    Google Scholar 

  • Kaukoranta E, Hämäläinen M, Sarvas J, Hari R (1986) Mixed and sensory nerve stimulations activate different cytoarchitectonic areas in the human primary somatosensory cortex SI: Neuromagnetic recordings and statistical considerations. Exp Brain Res 63:60–66

    Google Scholar 

  • Keller CH, Takahashi TT (1996) Binaural cross-correlation predicts the responses of neurons in the owl’s auditory space map under conditions simulating summing localization. J Neurosci 16:4300–4309

    Google Scholar 

  • Kiang NYS, Watanabe T, Thomas EC, Clark LF (1965) Discharge patterns of single fibers in the cat’s auditory nerve. MIT Press, Cambrdge

    Google Scholar 

  • Kitamura T, Sato S, Shimokura R, Ando Y (2002) Measurement of temporal and spatial factors of a flushing toilet noise in a downstairs bedroom. J Temporal Des Arch Environ 2:13–19

    Google Scholar 

  • Knuutila J, Ahonen A, Hämäläinen M, Kajola M, Laine P, Lounasmaa O, Parkkonen L, Simola J, Tesche C (1993) A 122-channel whole cortex SQUID system for measuring the brain’s magnetic fields. IEEE Trans Magn 29:3315–3320

    Google Scholar 

  • Krishnan A (2007) Human frequency following response. In Burkard RF, Don M, Eggermont JJ (eds) Auditory evoked potentials: basic principles and clinical application, Lippincott Williams & Wilkins, Baltimore, pp 313–335

    Google Scholar 

  • Krishnan A, Bidelman GM, Gandour JT (2010) Neural representation of pitch salience in the human brainstem revealed by psychophysical and electrophysiological indices. Hear Res 268:60–66

    Google Scholar 

  • Krishnan A, Xu Y, Gandour J, Cariani P (2005) Encoding of pitch in the human brainstem is sensitive to language experience. Brain Res Cogn Brain Res 25:161–168

    Google Scholar 

  • Krumbholz K, Patterson RD, Seither-Preisler A, Lammertmann C, Lütkenhöner B (2003) Neuromagnetic evidence for a pitch processing center in Heschl’s gyrus. Cereb Cortex 13:765–772

    Google Scholar 

  • Krumbholz K, Schönwiesner M, von Cramon DY, Rübsamen R, Shah NJ, Zilles K, Fink GR (2005) Representation of interaural temporal information from left and right auditory space in the human planum temporale and inferior parietal lobe. Cereb Cortex 15:317–324

    Google Scholar 

  • Lachs G, Al-Shaikh R, Bi Q, Saia RA, Teich M (1984) A neural counting model based on physiological characteristics of the peripheral auditory system. V. Applications to loudness estimation and intensity discrimination. IEEE Trans Syst Man Cybern SMC 14:819–836

    Google Scholar 

  • Lakatos P, Pincze Z, Fu KG, Javitt DC, Karmos G, Schroeder CE (2005) Timing of pure tone and noise-evoked responses in macaque auditory cortex. NeuroReport 16:933–937

    Google Scholar 

  • Langner G, Sams M, Heli P, Schulze H (1997) Frequency and periodicity are represented in orthogonal maps in the human auditory cortex: evidence from magnetoencephalography. J Comp Physiol A 181:665–676

    Google Scholar 

  • Levitt H (1971) Transformed up-down procedures in psychophysics. J Acoust Soc Am 49:467–477

    Google Scholar 

  • Licklider JCR (1951) A duplex theory of pitch perception. Experimenta 7:128–134

    Google Scholar 

  • Lindemann W (1986) Extension of a binaural cross-correlation model by means of contralateral inhibition, I: Simulation of lateralization of stationary signals. J Acoust Soc Am 80:1608–1622

    Google Scholar 

  • Lütkenhöner B, Lammertmann C, Knecht S (2001) Latency of auditory evoked field deflection N100m ruled by pitch or spectrum? Audiol NeuroOtol 6:263–278

    Google Scholar 

  • Lütkenhöner B, Krumbholz K, Seither-Preisler A (2003) Studies of tonotopy based on wave N100 of the auditory evoked field are problematic. Neuroimage 19:935–949

    Google Scholar 

  • Maeder PP, Meuli RA, Adriani M, Bellmann A, Fornari E, Thiran JP, Pittet A, Clarke S (2001) Distinct pathways involved in sound recognition and localization: a human fMRI study. Neuroimage 14:802–816

    Google Scholar 

  • McAlpine D, Grothe B (2003) Sound localization and delay lines—do mammals fit the model? Trends Neurosci 13:347–350

    Google Scholar 

  • McAlpine D, Jiang D, Palmer AR (2001) A neural code for low-frequency sound localization in mammals. Nature Neurosci 4:396–401

    Google Scholar 

  • McEvoy LK, Picton TW, Champagne SC (1991) The timing of the processes underlying lateralization: psychophysical and evoked potential measures. Ear Hear 12:389–398

    Google Scholar 

  • McEvoy L, Hari R, Imada T, Sams M (1993) Human auditory cortical mechanisms of sound lateralization: II. Interaural time differences at sound onset. Hear Res 67:98–109

    Google Scholar 

  • McPherson DL, Starr A (1993) Binaural interaction in auditory evoked potentials: Brainstem, middle- and long-latency components. Hear Res 66:91–98

    Google Scholar 

  • Meddis R, Hewitt M (1991) Virtual pitch and phase sensitivity of a computer model of the auditory periphery. I: Pitch identification. J Acoust Soc Am 89:2866–2882

    Google Scholar 

  • Mehrgardt S, Mellert V (1977) Transformation characteristics of the external human ear. J Acoust Soc Am 61:1567–1576

    Google Scholar 

  • Merthayasa IN, Hemmi H, Ando Y (1994) Loudness of a 1 kHz pure tone and sharply (1080 dB/Oct.) filtered noises centered on its frequency. Mem Grad School Sci Tech Kobe Univ 12A:147–156

    Google Scholar 

  • Mosteller F (1951) Remarks on the method of paired comparisons III. Psychometrika 16:207–218

    Google Scholar 

  • Nedzelnitsky V (1980) Sound pressure in the basal turn of the cat cochlea. J Acoust Soc Am 68:1676–1689

    Google Scholar 

  • Onchi Y (1961) Mechanism of the middle ear. J Acoust Soc Am 21:794–805

    Google Scholar 

  • Osman E (1971) A correlation model of binaural masking level differences. J Acoust Soc Am 50:1494–1511

    Google Scholar 

  • Osman E, Tzuo HY, Tzuo PL (1975) Theoretical analysis of detection of monaural signals as a function of interaural noise correlation and signal frequency. J Acoust Soc Am 57:939–942

    Google Scholar 

  • Palmer AR, Jiang D, McAlpine D (1999) Desynchronizing responses to correlated noise: a mechanism for binaural masking level differences at the inferior colliculus. J Physiol 417:722–734

    Google Scholar 

  • Palomäki K, Tiitinen H, Mäkinen V, May PJC, Alku P (2005) Spatial pro-cessing in human auditory cortex: the effects of 3D, ITD, and ILD stimulation techniques. Cogn Brain Res 24:364–379

    Google Scholar 

  • Pantev C, Lütkenhörner B, Hoke M, Lehnertz K (1986) Comparison between simultaneously recorded auditory-evoked magnetic fields and potentials elicited by ipsilateral, contralateral, and binaural tone burst stimulation. Audiology 25:54–61

    Google Scholar 

  • Pantev C, Hoke M, Lehnertz K, Lütkenhöner B, Anogianakis G, Wittkowski W (1988) Tonotopic organization of the human auditory cortex revealed by transient auditory evoked magnetic fields. Electroenceph Clin Neurophysiol 69:160–170

    Google Scholar 

  • Pantev C, Hoke M, Lehnertz K, Lütkenhöner B (1989) Neuromagnetic evidence of an amplitopic organization of the human auditory cortex. Electroenceph Clin Neurophysiol 72:225–231

    Google Scholar 

  • Pantev C, Bertrand O, Eulitz C, Verkindt C, Hampson S, Schuierer G, Elbert T (1995) Specific tonotopic organizations of different areas of the human auditory cortex revealed by simultaneous magnetic and electric recordings. Electroenceph Clin Neurophysiol 94:26–40

    Google Scholar 

  • Patterson RD, Allerhand M, Giguere C (1995) Time-domain modelling of peripheral auditory processing: A modular architecture and a software platform. J Acoust Soc Am 98:1890–1894

    Google Scholar 

  • Pickles JO (1983) Auditory-nerve correlates of loudness summation with stimulus bandwidth, in normal and pathological cochleae. Hear Res 12:239–250

    Google Scholar 

  • Pickles JO (ed) (2008) An introduction to the physiology of hearing, 3rd edn. Academic Press, London

    Google Scholar 

  • Puria S, William T, Peake WT, Rosowski JJ (1997) Sound-pressure measurements in the cochlear vestibule of human-cadaver ears. J Acoust Soc Am 101:2754–2770

    Google Scholar 

  • Rauschecker JP, Tian B (2000) Mechanisms and streams for processing of “what” and “where” in auditory cortex. Proc Natl Acad Sci USA 97:11800–11806

    Google Scholar 

  • Rauschecker JP, Tian B, Hauser M (1995) Processing of complex sounds in the macaque nonprimary auditory cortex. Science 268:111–114

    Google Scholar 

  • Reite M, Zimmerman JT, Edrich J, Zimmerman JE (1982) Auditory evoked magnetic fields: response amplitude vs. stimulus intensity. Electroenceph Clin Neurophysiol 54:147–152

    Google Scholar 

  • Relkin EM, Doucet JR (1997) Is loudness simply proportional to the auditory nerve spike count? J Acoust Soc Am 101:2735–2740

    Google Scholar 

  • Roberts TPL, Poeppel D (1996) Latency of auditory evoked M100 as a function of tone frequency. NeuroReport 7:1138–1140

    Google Scholar 

  • Romani GL, Williamson SJ, Kaufman L (1982) Tonotopic organization of the human auditory cortex. Science 216:1339–1340

    Google Scholar 

  • Rubinstein M, Feldman B, Fischler F, Frei EH, Spira D (1966) Measurement of stapedial-footplate displacements during transmission of sound through the middle ear. J Acoust Soc Am 44:1420–1426

    Google Scholar 

  • Rylander R, Bjӧrkman M (1997) Annoyance by aircraft noise around small airports. J Sound Vib 205:533–538

    Google Scholar 

  • Rylander R, Sӧrensen S, Kajland A (1972) Annoyance reactions from aircraft noise exposure. J Sound Vib 24:419–444

    Google Scholar 

  • Rylander R, Bjӧrkman M, Åhrlin U, Sӧrensen S, Kajland A (1980) Aircraft noise contours: importance of overflight frequency and noise level. J Sound Vib 69:583–595

    Google Scholar 

  • Rylander R, Bjӧrkman M, Åhrlin U, Arntzen U, Solberg S (1986) Dose–response relationships for traffic noise and annoyance. Arch Environ Health 41:7–10

    Google Scholar 

  • Saberi K, Takahashi Y, Konishi M, Albeck Y, Arthur BJ, Farahbod H (1998) Effects of interaural decorrelation on neural and behavioral detection of spatial cues. Neuron 21:789–798

    Google Scholar 

  • Sams M, Hämäläinen M, Hari R, McEvoy L (1993) Human auditory cortical mechanisms of sound lateralization: I. Interaural time differences within sound. Hear Res 67:89–97

    Google Scholar 

  • Sato S, Kitamura T, Ando Y (2002) Loudness of sharply (2068 dB/Octave) filtered noises in relation to the factors extracted from the autocorrelation function. J Sound Vib 250:47–52

    Google Scholar 

  • Sato S, Nishio K, Ando Y (2003) Propagation of alpha waves corresponding to subjective preference from the right hemisphere to the left with changes in the IACC of a sound field. J Temporal Des Arch Environ 3:60–69

    Google Scholar 

  • Scharf B (1962) Loudness summation and spectrum shape. J Acoust Soc Am 34:228–233

    Google Scholar 

  • Schlauch RS, Wier CC (1987) A method for relating loudness matching and intensity discrimination data. J Speech Hear Res 30:13–20

    Google Scholar 

  • Secker-Walker HE, Searle C (1990) Time domain analysis of auditory-nerve-fiber firing rates. J Acoust Soc Am 88:1427–1436

    Google Scholar 

  • Seither-Preisler A, Krumbholz K, Lutkenhoner B (2003) Sensitivity of the neuromagnetic N100m deflection to spectral bandwidth: A function of the auditory periphery? Audiol Neurootol 8:322–337

    Google Scholar 

  • Seither-Preisler A, Krumbhol K, Patterson RD, Seither S, Lutkenhoner B (2004) Interaction between the neuromagnetic responses to sound energy onset and pitch onset suggests common generators. Eur J Neurosci 19:3073–3080

    Google Scholar 

  • Shackleton TM, Arnott RH, Palmer AR (2005) Sensitivity to interaural correlation of single neurons in the inferior colliculusof guinea pigs. J Assoc Res Otolaryngol 6:244–259

    Google Scholar 

  • Shaw EAG (1974) Transformation of sound pressure level from the free field to the eardrum in the horizontal plane. J Acoust Soc Am 56:1848–1861

    Google Scholar 

  • Shaw EAG, Teranishi R (1968) Sound pressure generated in an external-ear replica and real human ears by a nearby point source. J Acoust Soc Am 44:240–249

    Google Scholar 

  • Shofner WP (1991) Temporal representation of rippled noise in the anteroventral cochlear nucleus of the chinchilla. J Acoust Soc Am 90:2450–2466

    Google Scholar 

  • Shofner WP (1999) Responses of cochlear nucleus units in the chinchilla to iterated rippled noises: analysis of neural autocorrelograms. J Neurophysiol 81:2662–2674

    Google Scholar 

  • Soeta Y, Nakagawa S (2008a) The effect of pitch and pitch strength on an auditory-evoked N1m. NeuroReport 19:783–787

    Google Scholar 

  • Soeta Y, Nakagawa S (2008b) Relationship between loudness and auditory evoked N1m. Interdisci Res Explor, Biomagnetism, pp 95–97

    Google Scholar 

  • Soeta Y, Nakagawa S (2009) Level-dependent growth on auditory evoked N1m for low- and high-frequency tones. NeuroReport 20:548–552

    Google Scholar 

  • Soeta Y, Nakagawa S, Tonoike M, Ando Y (2002) Magnetoencephalographic responses corresponding to individual subjective preference of sound fields. J Sound Vib 258:419–428

    Google Scholar 

  • Soeta Y, Nakagawa S, Tonoike M, Ando Y (2003) Spatial analyses of magnetoencephalographic activities in relation to subjective preference of a sound field. J Temporal Des Arch Environ 3:28–35

    Google Scholar 

  • Soeta Y, Maruo T, Ando Y (2004a) Annoyance of bandpass filtered noises in relation to the factor extracted from autocorrelation function. J Acoust Soc Am 116:3275–3278

    Google Scholar 

  • Soeta Y, Hotehama T, Nakagawa S, Tonoike M, Ando Y (2004b) Auditory evoked magnetic fields in relation to the inter-aural cross-correlation of bandpass noise. Hear Res 96:109–114

    Google Scholar 

  • Soeta Y, Nakagawa S, Tonoike M, Ando Y (2004c) Magnetoencephalographic responses corresponds to individual annoyance of bandpass noise. J Sound Vib 277:479–489

    Google Scholar 

  • Soeta Y, Nakagawa S, Tonoike M (2005a) Auditory evoked magnetic fields in relation to bandwidth variations of bandpass noise. Hear Res 202:47–54

    Google Scholar 

  • Soeta Y, Nakagawa S, Tonoike M (2005b) Auditory evoked magnetic fields in relation to the iterated rippled noise. Hear Res 205:256–261

    Google Scholar 

  • Soeta Y, Nakagawa S, Matsuoka K (2006) The effect of center frequency and bandwidth on the auditory evoked magnetic field. Hear Res 218:64–71

    Google Scholar 

  • Stecker GC, Harrington IA, Middlebrooks JC (2005) Location coding by opponent neural populations in the auditory cortex. PLoS Biol 3:520–528

    Google Scholar 

  • Stufflebeam SM, Poeppel D, Rowley HA, Roberts TPL (1998) Peri-threshold encoding of stimulus frequency and intensity in the M100 latency. NeuroReport 9:91–94

    Google Scholar 

  • Suzuki Y, Takeshima H (2004) Equal-loudness counters for pure tones. J Acoust Soc Am 116:918–933

    Google Scholar 

  • ten Kate JH, van Bekkum MF (1988) Synchrony-dependent autocorrelation in eighth-nerve-fiber response to rippled noise. J Acoust Soc Am 84:2092–2102

    Google Scholar 

  • Thurstone LL (1927) A law of comparative judgement. Psychol Rev 34:273–289

    Google Scholar 

  • Tiihonen J, Hari RM, Kajola M, Karhu J, Ahlfors S, Tissari S (1991) Magnetoencephalographic 10-Hz rhythm from the human auditory cortex. Neurosci Lett 129:303–305

    Google Scholar 

  • Vasama JP, Mäkelä JP, Tissari SO, Hämäläinen MS (1995) Effects of intensity variation on human auditory evoked magnetic fields. Acta Otolaryngol (Stockh) 115:616–621

    Google Scholar 

  • Wada H, Metoki T, Kobayashi T (1992) Analysis of dynamic behavior of human middle-ear using a finite-element method. J Acoust Soc Am 92:3157–3168

    Google Scholar 

  • Wessinger CM, VanMeter J, Tian B, Van Lare J, Pekar J, Rauschecker JP (2001) Hierarchical organization of the human auditory cortex revealed by functional magnetic resonance imaging. J Cogn Neurosci 13:1–7

    Google Scholar 

  • Wiener FM, Ross DA (1946) The pressure distribution in the auditory canal in a progressive sound field. J Acoust Soc Am 18:401–408

    Google Scholar 

  • Wightman FL (1973) The pattern-transformation model of pitch. J Acoust Soc Am 54:407–416

    Google Scholar 

  • Winter IM, Wiegrebe L, Patterson RD (2001) The temporal representation of the delay of iterated rippled noise in the ventral cochlear nucleus of the guinea-pig. J Physiol 537:553–566

    Google Scholar 

  • Woldorff MG, Tempelmann C, Fell J, Tegeler C, Gaschler-Markefski B, Hinrichs H, Heinze H, Scheich H (1999) Lateralized auditory spatial perception and the contralaterality of cortical processing as studied with functional magnetic resonance imaging and magnetoencephalography. Hum Brain Mapp 7:49–66

    Google Scholar 

  • Yin TC, Chan JC (1990) Interaural time sensitivity in medial superior olive of cat. J Neurophysiol 64:465–488

    Google Scholar 

  • Yin TC, Chan JCK, Carney LH (1987) Effects of interaural time delays of noise stimuli on low-frequency cells in the cat’s inferior colliculus. III. Evidence for cross-correlation. J Neurophysiol 58:562–583

    Google Scholar 

  • Yost WA (1996) Pitch strength of iterated rippled noise. J Acoust Soc Am 100:3329–3335

    Google Scholar 

  • Yost WA (ed) (2000) Fundamentals of hearing: an introduction. Academic Press, San Diego

    Google Scholar 

  • Yost WA, Hill R (1979) Models of the pitch and pitch strength of ripple noise. J Acoust Soc Am 66:400–410

    Google Scholar 

  • Yost WA, Patterson R, Sheft S (1996) A time domain description for the pitch strength of iterated ripple noise. J Acoust Soc Am 99:1066–1078

    Google Scholar 

  • Yvert B, Bertrand O, Pernier J, Ilmoniemi RJ (1998) Human cortical responses evoked by dichotically presented tones of different frequencies. NeuroReport 9:1115–1119

    Google Scholar 

  • Zimmer U, Macaluso E (2005) High binaural coherence determines successful sound localization and increased activity in posterior auditory areas. Neuron 47:893–905

    Google Scholar 

  • Zwicker E, Flottorp G, Stevens SS (1957) Critical bandwidth in loudness summation. J Acoust Soc Am 29:548–557

    Google Scholar 

  • Zwislocki JJ (1962) Analysis of middle ear function. Part I: input impedance. J Acoust Soc Am 35:1514–1523

    Google Scholar 

  • Zwislocki JJ (1965) Analysis of some auditory characteristics. Handb Math Psycol 3:1–97

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshiharu Soeta .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Soeta, Y., Ando, Y. (2015). Signal Processing Model of Human Auditory System. In: Neurally Based Measurement and Evaluation of Environmental Noise. Mathematics for Industry, vol 20. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55432-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55432-5_2

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55431-8

  • Online ISBN: 978-4-431-55432-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics