Skip to main content

Optimal Cycles for Persistent Homology Via Linear Programming

  • Conference paper
  • First Online:
Optimization in the Real World

Part of the book series: Mathematics for Industry ((MFI,volume 13))

Abstract

In this work, we discuss the problem of finding optimal cycles for homology groups of simplicial complexes and for persistent homology of filtrations. We review the linear programming formulation of the optimal homologous cycle problem and its extension to allow for multiple cycles. By inserting these linear programming problems into the persistent homology algorithm, we are able to compute an optimal cycle, that has been optimized at birth, for every persistent interval in the persistent diagram.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., Bourne, P.E.: The Protein Data Bank. Nucleic Acids Res. 28(1), 235ā€“242 (2000)

    Google ScholarĀ 

  2. Cgal, Computational Geometry Algorithms Library: http://www.cgal.org

  3. Chen, C., Freedman, D.: Hardness results for homology localization. Discrete Comput. Geom. 45(3), 425ā€“448 (2011)

    ArticleĀ  MATHĀ  MathSciNetĀ  Google ScholarĀ 

  4. Chen, C., Freedman, D.: Measuring and computing natural generators for homology groups. Comput. Geom. 43(2), 169ā€“181 (2010)

    ArticleĀ  MATHĀ  MathSciNetĀ  Google ScholarĀ 

  5. Dey, T.K., Hirani, A.N., Krishnamoorthy, B.: Optimal homologous cycles, total unimodularity, and linear programming. SIAM J. Comput. 40(4), 1026ā€“1044 (2011)

    ArticleĀ  MATHĀ  MathSciNetĀ  Google ScholarĀ 

  6. Dey, T.K., Sun, J., Wang, Y.: Approximating cycles in a shortest basis of the first homology group from point data. Inverse Prob. 27(12) (2011)

    Google ScholarĀ 

  7. Edelsbrunner, H.: Weighted alpha shapes. Technical report, Department of Computer Science, University of Illinois at Urbana-Champaign (1992)

    Google ScholarĀ 

  8. Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and simplification. Discrete Comput. Geom. 28(4), 511ā€“533 (2002)

    ArticleĀ  MATHĀ  MathSciNetĀ  Google ScholarĀ 

  9. Erickson, J., Whittlesey, K.: Greedy optimal homotopy and homology generators. In: Proceedings of the ACM-SIAM Symposium on Discrete Algorithms, pp. 1038ā€“1046. SIAM (2005)

    Google ScholarĀ 

  10. Escolar, E.G., Yasuaki H.: Computing optimal cycles of homology groups. In: Nishii, R., et al. (eds.) A Mathematical Approach to Research Problems of Science and Technology, pp. 101ā€“118. Springer, Japan (2014)

    Google ScholarĀ 

  11. Fermi, G., Perutz, M.F., Shaanan, B., Fourme, R.: The crystal structure of human deoxyhaemoglobin at 1.74 ƅ resolution. J. Mol. Biol. 175(2), 159ā€“174 (1984)

    ArticleĀ  Google ScholarĀ 

  12. International Business Machines Corp.: IBM ILOG CPLEX Optimization Studio. http://www-03.ibm.com/software/products/en/ibmilogcpleoptistud/

  13. Kaczynski, T., Mischaikow, K., Mrozek, M.: Computational Homology. Springer, New York (2004)

    BookĀ  MATHĀ  Google ScholarĀ 

  14. Munkres, J.: Elements of Algebraic Topology. The Benjamin/Cummings Publishing Company Inc, Menlo Park, California (1984)

    MATHĀ  Google ScholarĀ 

  15. Nakamura, T., Hiraoka, Y., Hirata, A., Escolar, E.G., Matsue, K., Nishiura, Y.: Description of Medium-Range Order in Amorphous Structures by Persistent Homology. arxiv.org/abs/1501.03611

  16. Salkin, H.M., Mathur, K.: Foundations of Integer Programming. North Holland, New York (1989)

    Google ScholarĀ 

  17. Zomorodian, A., Carlsson, G.: Computing persistent homology. Discrete Comput. Geom. 33(2), 249ā€“274 (2005)

    ArticleĀ  MATHĀ  MathSciNetĀ  Google ScholarĀ 

Download references

Acknowledgments

The authors would like to thank Genki Kusano and Hiroshi Takeuchi for interesting discussions, especially from the side of applications, and Prof.Ā Hayato Waki for the chance to give this talk in the workshop ā€œOptimization in the Real Worldā€”Towards Solving Real-World Optimization Problemsā€.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emerson G. Escolar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2016 Springer Japan

About this paper

Cite this paper

Escolar, E.G., Hiraoka, Y. (2016). Optimal Cycles for Persistent Homology Via Linear Programming. In: Fujisawa, K., Shinano, Y., Waki, H. (eds) Optimization in the Real World. Mathematics for Industry, vol 13. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55420-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55420-2_5

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55419-6

  • Online ISBN: 978-4-431-55420-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics