Advertisement

Surfaces and Vortex Cores

  • Takafumi Kita
Part of the Graduate Texts in Physics book series (GTP)

Abstract

We discuss topics concerning inhomogeneous superconducting states of s-wave pairing that are realized near boundaries and vortex cores. First, we consider a normal-superconducting interface to show that an electron approaching the interface from the normal side experiences a peculiar reflection called Andreev reflection, which backscatters a hole; the energy flow is substantially blocked through the interface because of this reflection. Next, we study quasiparticles around a vortex core to find that there exist localized quasiparticle states called Caroli–de Gennes–Matricon mode below the bulk energy gap; they recover a T-linear term in the specific heat and are also responsible for the electric resistivity when vortices are forced to move. Finally, we use the quasiclassical Eilenberger equations to study in detail an isolated s-wave vortex and its local density of states, Figs. 16.3–16.5.

Keywords

Vortex Core Pair Potential Normal Side Andreev Reflection Quasiclassical Approximation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    M. Abramowitz, I.A. Stegun (eds.), Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables (Dover, New York, 1965)Google Scholar
  2. 2.
    A.F. Andreev, J. Exp. Theor. Phys. 46, 1823 (1964). (Sov. Phys. JETP 19, 1228 (1964))Google Scholar
  3. 3.
    G.B. Arfken, H.J. Weber, Mathematical Methods for Physicists (Academic, New York, 2012)Google Scholar
  4. 4.
    G.E. Blonder, M. Tinkham, T.M. Klapwijk, Phys. Rev. B 25, 4515 (1982)CrossRefADSGoogle Scholar
  5. 5.
    C. Caroli, P.G. de Gennes, J. Matricon, Phys. Lett. 9, 307 (1964)CrossRefADSMATHGoogle Scholar
  6. 6.
    F. Gygi, M. Schlüter, Phys. Rev. B 43, 7609 (1991)CrossRefADSGoogle Scholar
  7. 7.
    N. Hayashi, T. Isoshima, M. Ichioka, K. Machida, Phys. Rev. Lett. 80, 2921 (1998)CrossRefADSGoogle Scholar
  8. 8.
    H.F. Hess, R.B. Robinson, R.C. Dynes, J.M. Valles Jr., J.V. Waszczak, Phys. Rev. Lett. 62, 214 (1989)CrossRefADSGoogle Scholar
  9. 9.
    M. Ichioka, N. Hayashi, N. Enomoto, K. Machida, Phys. Rev. B 53, 15316 (1996)CrossRefADSGoogle Scholar
  10. 10.
    U. Klein, J. Low Temp. Phys. 69, 1 (1987)CrossRefADSGoogle Scholar
  11. 11.
    L. Kramer, W. Pesch, Z. Phys. 269, 59 (1974)CrossRefADSGoogle Scholar
  12. 12.
    Y. Nagato, K. Nagai, J. Hara, J. Low Temp. Phys. 93, 33 (1993)CrossRefADSGoogle Scholar
  13. 13.
    W. Pesch, L. Kramer, J. Low Temp. Phys. 15, 367 (1974)CrossRefADSGoogle Scholar
  14. 14.
    W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes: The Art of Scientific Computing, 3rd edn. (Cambridge University Press, Cambridge, 2007)Google Scholar
  15. 15.
    N. Schopohl, K. Maki, Phys. Rev. B 52, 490 (1995)CrossRefADSGoogle Scholar
  16. 16.
    E.V. Thuneberg, J. Kurkijärvi, D. Rainer, Phys. Rev. B 29, 3913 (1984)CrossRefADSGoogle Scholar

Copyright information

© Springer Japan 2015

Authors and Affiliations

  • Takafumi Kita
    • 1
  1. 1.Department of PhysicsHokkaido UniversitySapporoJapan

Personalised recommendations