Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 494 Accesses

Abstract

We carry out high-resolution calculation of thermal convection in the spherical shell with rotation to reproduce the near surface shear layer (NSSL). It is thought that the NSSL is maintained by thermal convection for small spatial scales and short time scales, which causes a weak rotational influence. The calculation with the RSST succeeds in including such a small scale as well as large-scale convection and the NSSL is reproduced especially at high latitude. The maintenance mechanisms are the following. The Reynolds stress under the weak influence of the rotation transports the angular momentum radially inward. Regarding the dynamical balance on the meridional plane, in the high latitude positive correlation \(\langle v'_rv'_\theta \rangle \) is generated by the poleward meridional flow whose amplitude increases with the radius in the NSSL and negative correlation \(\langle v'_rv'_\theta \rangle \) is generated by the Coriolis force in the deep convection zone. The force caused by the Reynolds stress compensates the Coriolis force in the NSSL.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • A. Brandenburg, Near-surface shear layer dynamics, in IAU Symposium, vol. 239, ed. by F. Kupka, I. Roxburgh, K.L. Chan (2007), pp. 457–466. doi:10.1017/S1743921307000919

  • A.S. Brun, M.S. Miesch, J. Toomre, Modeling the dynamical coupling of solar convection with the radiative interior. ApJ 742, 79 (2011). doi:10.1088/0004637X/742/2/79

    Article  ADS  Google Scholar 

  • M.L. De Rosa, P.A. Gilman, J. Toomre, Solar multiscale convection and rotation gradients studied in shallow spherical shells. ApJ 581, 1356–1374 (2002). doi:10.1086/344295

    Article  ADS  Google Scholar 

  • Y. Fan, N. Featherstone, F. Fang, Three-dimensional MHD simulations of emerging active region flux in a turbulent rotating solar convective envelope: the numerical model and initial results (ArXiv e-prints, 2013)

    Google Scholar 

  • P.A. Gilman, P.V. Foukal, Angular velocity gradients in the solar convection zone. ApJ 229, 1179–1185 (1979). doi:10.1086/157052

    Article  ADS  Google Scholar 

  • G. Guerrero, P.K. Smolarkiewicz, A. Kosovichev, N. Mansour, Solar differential rotation: hints to reproduce a near-surface shear layer in global simulations, in IAU Symposium, vol. 294, ed. by A.G. Kosovichev, E. de Gouveia Dal Pino, Y. Yan (2013), pp. 417–425. doi:10.1017/S1743921313002858

  • H. Hotta, T. Yokoyama, Modeling of differential rotation in rapidly rotating solar-type stars. ApJ 740, 12 (2011). doi:10.1088/0004-637X/740/1/12

    Article  ADS  Google Scholar 

  • H. Hotta, M. Rempel, T. Yokoyama, Y. Iida, Y. Fan, Numerical calculation of convection with reduced speed of sound technique. A&A 539, 30 (2012). doi:10.1051/0004-6361/201118268

    Article  ADS  Google Scholar 

  • R. Howard, P.I. Gilman, P.A. Gilman, Rotation of the sun measured from Mount Wilson white-light images. ApJ 283, 373–384 (1984). doi:10.1086/162315

    Article  ADS  Google Scholar 

  • M.S. Miesch, Large-scale dynamics of the convection zone and tachocline. Living Rev. Sol. Phys. 2, 1 (2005)

    ADS  Google Scholar 

  • M.S. Miesch, B.W. Hindman, Gyroscopic pumping in the solar near-surface shear layer. ApJ 743, 79 (2011). doi:10.1088/0004-637X/743/1/79

    Article  ADS  Google Scholar 

  • M.S. Miesch, A.S. Brun, J. Toomre, Solar differential rotation influenced by latitudinal entropy variations in the tachocline. ApJ 641, 618–625 (2006). doi:10.1086/499621

    Article  ADS  Google Scholar 

  • M.S. Miesch, A.S. Brun, M.L. De Rosa, J. Toomre, Structure and evolution of giant cells in global models of solar convection. ApJ 673, 557–575 (2008). doi:10.1086/523838

    Article  ADS  Google Scholar 

  • M. Rempel, Solar differential rotation and meridional flow: the role of a subadiabatic tachocline for the Taylor-Proudman balance. ApJ 622, 1320–1332 (2005). doi:10.1086/428282

    Article  ADS  Google Scholar 

  • M.J. Thompson, J. Christensen-Dalsgaard, M.S. Miesch, J. Toomre, The internal rotation of the sun. ARA&A 41, 599–643 (2003). doi:10.1146/annurev.astro.41.011802.094848

    Article  ADS  Google Scholar 

  • J. Zhao, R.S. Bogart, A.G. Kosovichev, T.L. Duvall Jr., T. Hartlep, Detection of equatorward meridional flow and evidence of double-cell meridional circulation inside the Sun. ApJL 774, 29 (2013). doi:10.1088/2041-8205/774/2/L29

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideyuki Hotta .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Hotta, H. (2015). Reproduction of Near Surface Shear Layer with Rotation. In: Thermal Convection, Magnetic Field, and Differential Rotation in Solar-type Stars. Springer Theses. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55399-1_4

Download citation

Publish with us

Policies and ethics