Skip to main content

Array Normal Model and Incomplete Array Variate Observations

  • Chapter
  • First Online:
Applied Matrix and Tensor Variate Data Analysis

Part of the book series: SpringerBriefs in Statistics ((JSSRES))

  • 2340 Accesses

Abstract

Missing data present an important challenge when dealing with high-dimensional data arranged in the form of an array. The main purpose of this article is to introduce methods for estimation of the parameters of array variate normal probability model from partially observed multiway data. The methods developed here are useful for missing data imputation, estimation of mean, and covariance parameters for multiway data. A review of array variate distributions is included. A multiway semi-parametric mixed-effects model that allows separation of multiway mean and covariance effects is also defined, and an efficient algorithm for estimation based on the spectral decompositions of the covariance parameters is recommended. We demonstrate our methods with simulations and real-life data involving the estimation of genotype and environment interaction effects on possibly correlated traits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akdemir, D., & Gupta, A. K. (2011). Array variate random variables with multiway kronecker delta covariance matrix structure. Journal of Algebraic Statistics, 2(1), 98–113.

    Article  MathSciNet  Google Scholar 

  2. Allen, G. I., & Tibshirani, R. (2010). Transposable regularized covariance models with an application to missing data imputation. The Annals of Applied Statistics, 4(2), 764–790.

    Article  MathSciNet  MATH  Google Scholar 

  3. Anderson, T. W. (1957). Maximum likelihood estimates for a multivariate normal distribution when some observations are missing. Journal of the American Statistical Association, 52(278), 200–203.

    Article  MathSciNet  MATH  Google Scholar 

  4. Anderson, T. W. (1984). An introduction to multivariate. Wiley.

    Google Scholar 

  5. Beale, E. M. L., & Little, R. J. A. (1975). Missing values in multivariate analysis. Journal of the Royal Statistical Society. Series B (Methodological), 129–145.

    Google Scholar 

  6. Blaha, G. (1977). A few basic principles and techniques of array algebra. Journal of Geodesy, 51(3), 177–202.

    MathSciNet  Google Scholar 

  7. Bro, R. (1997). Parafac. Tutorial and applications. Chemometrics and Intelligent Laboratory Systems, 38(2), 149–171.

    Article  Google Scholar 

  8. Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the em algorithm. Journal of the Royal Statistical Society. Series B (Methodological), 1–38.

    Google Scholar 

  9. Dempster, A. P., Rubin, D. B., & Tsutakawa, R. K. (1981). Estimation in covariance components models. Journal of the American Statistical Association, 76(374), 341–353.

    Article  MathSciNet  MATH  Google Scholar 

  10. Flury, B. (1997). A first course in multivariate statistics. Springer.

    Google Scholar 

  11. Pieter, G. F. (1921). Heredity of headform in man. Genetica, 3(3), 193–400.

    Google Scholar 

  12. Gianola, D., & Van Kaam, J. B. (2008). Reproducing kernel hilbert spaces regression methods for genomic assisted prediction of quantitative traits. Genetics, 178(4), 2289–2303.

    Article  Google Scholar 

  13. Gupta, A. K., & Nagar, D. K. (2000). Matrix variate distributions. In: Chapman and Hall/CRC Monographs and Surveys in Pure and Applied Mathematics. London: Chapman and Hall.

    Google Scholar 

  14. Harshman, R. A. (1970). Foundations of the parafac procedure: models and conditions for an “explanatory” multimodal factor analysis. UCLA Working Papers in Phonetics.

    Google Scholar 

  15. Hartley, H. O., & Hocking, R.R. (1971). The analysis of incomplete data. Biometrics, 783–823.

    Google Scholar 

  16. Harville, D. A. (1983). Discussion on a section on interpolation and estimation. In: DHA and HT David (ed.), Statistics an Appraisal (pp. 281–286). Ames: The Iowa State University Press.

    Google Scholar 

  17. Henderson, C. R., & Quaas, R. L. (1976). Multiple trait evaluation using relatives’ records. Journal of Animal Science, 43(6), 1188–1197.

    Google Scholar 

  18. Hoff, P. D. (2011). Hierarchical multilinear models for multiway data. Computational Statistics and Data Analysis, 55(1), 530–543.

    Article  MathSciNet  MATH  Google Scholar 

  19. Jørgensen, B., & Petersen, H. C. (2012). Efficient estimation for incomplete multivariate data. Journal of Statistical Planning and Inference, 142(5), 1215–1224.

    Article  MathSciNet  Google Scholar 

  20. Kang, H. M., Zaitlen, N. A., Wade, C. M., Kirby, A., Heckerman, D., Daly, M. J., et al. (2008). Efficient control of population structure in model organism association mapping. Genetics, 178(3), 1709–1723.

    Article  Google Scholar 

  21. Kimeldorf, G. S., & Wahba, G. (1970). A correspondence between bayesian estimation on stochastic processes and smoothing by splines. The Annals of Mathematical Statistics, 495–502.

    Google Scholar 

  22. Lu, N., & Zimmerman, D. L. (2005). The likelihood ratio test for a separable covariance matrix. Statistics and Probability Letters, 73(4), 449–457.

    Article  MathSciNet  MATH  Google Scholar 

  23. Meng, X. L., & Rubin, D. B. (1993). Maximum likelihood estimation via the ecm algorithm: A general framework. Biometrika, 80(2), 267–278.

    Article  MathSciNet  MATH  Google Scholar 

  24. Ohlson, M., Ahmad, M. R., & von Rosen D. (2011). The multilinear normal distribution: Introduction and some basic properties. Journal of Multivariate Analysis.

    Google Scholar 

  25. Orchard, T., & Woodbury, M. A. (1972). A missing information principle: theory and applications. In: Proceedings of the 6th Berkeley Symposium on Mathematical Statistics and Probability (vol. 1, pp. 697–715).

    Google Scholar 

  26. Rauhala, U. A. (1974). Array Algebra with Applications in Photogrammetry and Geodesy. Division of Photogrammetry, Royal Institute of Technology.

    Google Scholar 

  27. Robinson, G. K. (1991). That blup is a good thing: The estimation of random effects. Statistical Science, 6(1), 15–32.

    Article  MathSciNet  MATH  Google Scholar 

  28. Roy, A., & Khattree, R. (2003). Tests for mean and covariance structures relevant in repeated measures based discriminant analysis. Journal of Applied Statistical Science, 12(2), 91–104.

    Google Scholar 

  29. Roy, A., & Leiva, R. (2008). Likelihood ratio tests for triply multivariate data with structured correlation on spatial repeated measurements. Statistics and Probability Letters, 78(13), 1971–1980.

    Article  MathSciNet  MATH  Google Scholar 

  30. Schölkopf, B., & Smola, A. (2005). Learning with Kernels. Cambridge: MIT Press.

    Google Scholar 

  31. Sorensen, D., & Gianola, D. (2002). Likelihood, Bayesian, and MCMC methods in quantitative genetics. Springer.

    Google Scholar 

  32. Speed, T. (1991). Comment on “That blup is a good thing: The estimation of random effects”. Statistical Science, 6(1), 42–44.

    Article  MathSciNet  Google Scholar 

  33. Srivastava, M. S., Nahtman, T., & Von Rosen, D. (2008). Estimation in general multivariate linear models with kronecker product covariance structure. Report: Research Report Centre of Biostochastics, Swedish University of Agriculture science. 1.

    Google Scholar 

  34. Srivastava, M. S., Von Rosen, T., & Von Rosen, D. (2008). Models with a kronecker product covariance structure: Estimation and testing. Mathematical Methods of Statistics, 17(4), 357–370.

    Article  MathSciNet  MATH  Google Scholar 

  35. Trawinski, I. M., & Bargmann, R. E. (1964). Maximum likelihood estimation with incomplete multivariate data. The Annals of Mathematical Statistics, 35(2), 647–657.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This research was supported by the USDA-NIFA-AFRI Triticeae Coordinated Agricultural Project, award number 2011-68002-30029.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deniz Akdemir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Akdemir, D. (2016). Array Normal Model and Incomplete Array Variate Observations. In: Sakata, T. (eds) Applied Matrix and Tensor Variate Data Analysis. SpringerBriefs in Statistics(). Springer, Tokyo. https://doi.org/10.1007/978-4-431-55387-8_5

Download citation

Publish with us

Policies and ethics