Skip to main content

Preparation of Nanosize Silicon-Nitride-Based Ceramics and Their Superplasticity

  • Chapter
  • First Online:
  • 508 Accesses

Part of the book series: NIMS Monographs ((NIMSM))

Abstract

Nano-sized ceramics are expected to exhibit improved wear resistance, increased strength, elevated hardness, and, in particular, noticeable high-temperature ductility. This article aims to provide a comprehensive description of the development of dense nano-sized Si3N4-based ceramics or composites by high-energy mechanical milling followed by spark plasma sintering. Mechanical milling transforms most of the starting powder mixture into a homogeneous amorphous phase containing a large amount of nano-sized β-Si3N4 particles. Rapid spark plasma sintering at a low temperature with a short holding time can prevent abnormal grain growth. The compression superplastic deformation of nano-sized Si3N4 ceramics reveals a transition of the deformation mechanism from an interface-reaction-controlled solution-precipitation process at low stresses to a grain boundary sliding process accommodated by diffusion-controlled solution-precipitation at high stresses.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Riley FL (2000) J Am Ceram Soc 83:245

    Article  Google Scholar 

  2. Wakai F, Kodama Y, Sakaguchi S, Murayama N, Izaki K, Niihara K (1990) Nature 344:421

    Article  Google Scholar 

  3. Melendez-Martinez JJ, Domingue-Rodriguez A (2004) Prog Mater Sci 49:19

    Article  Google Scholar 

  4. Xie RJ, Mitomo M, Zhan GD (2000) Acta Mater 48:2049

    Article  Google Scholar 

  5. Rosenflanz A, Chen IW (1997) J Am Ceram Soc 80:1341

    Article  Google Scholar 

  6. Hwang SL, Chen IW (1994) J Am Ceram Soc 77:2575

    Article  Google Scholar 

  7. Kim BN, Hiraga K, Morita K, Sakka Y (2001) Nature 413:288

    Article  Google Scholar 

  8. Mayo MJ, Hague DC, Chen DJ (1993) Mater Sci Eng A 166:145

    Article  Google Scholar 

  9. Gleiter H (1989) Prog Mater Sci 33:223

    Article  Google Scholar 

  10. Nishimura T, Mitomo M, Hirotsuru H, Kawahara M (1995) J Mater Sci Lett 14:1046

    Article  Google Scholar 

  11. Orru R, Licheri R, Locci AM, Cincotti A, Cao GC (2009) Mater Sci Eng R 63:127

    Article  Google Scholar 

  12. Li YL, Liang Y, Zheng F, Ma XF, Cui SJ (2000) J Mater Res 15:988

    Article  Google Scholar 

  13. Suryanarayana C (2001) Prog Mater Sci 46:1

    Article  Google Scholar 

  14. Koch CC (1997) Nanostruct Mater 9:13

    Article  Google Scholar 

  15. Kingery WD (1959) J Appl Phys 30:301

    Article  Google Scholar 

  16. Hampshire S (2003) J Non-Cryst Solids 316:64

    Article  Google Scholar 

  17. Ekstrom T, Nygren M (1992) J Am Ceram Soc 75:259

    Article  Google Scholar 

  18. Hwang SL, Chen IW (1994) J Am Ceram Soc 77:165

    Article  Google Scholar 

  19. Goto Y, Komatsu M (1999) J Am Ceram Soc 82:1467

    Article  Google Scholar 

  20. Herrmann M, Schulz I, Zalite I (2004) J Eur Ceram Soc 24:3327

    Article  Google Scholar 

  21. Zenotchkine M, Shuba R, Chen IW (2002) J Am Ceram Soc 85:1882

    Article  Google Scholar 

  22. Xu X, Nishimura T, Hirosaki N, Xie RJ, Zhu YC, Yamamoto Y, Tanaka H (2005) J Am Ceram Soc 88:934

    Article  Google Scholar 

  23. Akimune Y, Tanimura M, Okamoto Y, Akimune Y, Mitomo M (1994) J Ceram Soc Jpn 102:875

    Article  Google Scholar 

  24. Andersson P, Holmberg K (1994) Wear 175:1

    Article  Google Scholar 

  25. Iizuka T, Kita H (2005) Wear 258:877

    Article  Google Scholar 

  26. Hyuga H, Hirao K, Jones MI, Yamauchi Y (2003) J Am Ceram Soc 86:1081

    Article  Google Scholar 

  27. Hyuga H, Jones MI, Hirao K, Yamauchi Y (2004) J Eur Ceram Soc 24:877

    Article  Google Scholar 

  28. Niihara K (1991) J Ceram Soc Jpn 99:974

    Article  Google Scholar 

  29. Kusunose T, Sekino T, Choa YH, Niihara K (2002) J Am Ceram Soc 85:2678

    Article  Google Scholar 

  30. Herrmann M, Schuber C, Rendtel A, Hubner H (1998) J Am Ceram Soc 81:1095

    Article  Google Scholar 

  31. Yang JF, Zhang GJ, Kondo N, Ohji T (2002) Acta Mater 50:4831

    Article  Google Scholar 

  32. Cancado LG, Pimenta MA, Neves BRA, Dantas MSS, Jorio A (2004) Phys Rev Lett 93:247401

    Article  Google Scholar 

  33. Herrmann M, Schuber C, Rendtel A, Hubner H (1998) J Am Ceram Soc 81:1095

    Article  Google Scholar 

  34. Watari K, Kawamoto M, Ishizaki K (1989) Mater Sci Eng A 109:89

    Article  Google Scholar 

  35. Grande T, Sommerset H, Hagen E, Wiik K, Einarsrud MA (1997) J Am Ceram Soc 80:1047

    Article  Google Scholar 

  36. Todd JA, Xu ZY (1989) J Mater Sci 24:4443

    Article  Google Scholar 

  37. Crampon J, Duclos R (1997) J Am Ceram Soc 80:85

    Article  Google Scholar 

  38. Lange FF, Davis BI, Clarke DR (1980) J Mater Sci 15:601

    Article  Google Scholar 

  39. Carroll DF, Tressler RE (1989) J Am Ceram Soc 72:49

    Article  Google Scholar 

  40. Wiederhorn SM, Roberts DE, Chuang TJ (1988) J Am Ceram Soc 71:602

    Article  Google Scholar 

  41. Arons PM, Tien JK (1980) J Mater Sci 15:2046

    Article  Google Scholar 

  42. Evans AG, Rana A (1980) Acta Metall 28:129

    Article  Google Scholar 

  43. Wakai F (1994) Acta Metall Mater 42:1163

    Article  Google Scholar 

  44. Shinoda Y, Yoshida M, Akatsu T, Wakai F (2004) J Am Ceram Soc 87:1919

    Article  Google Scholar 

  45. Emoto H, Mitomo M (1997) J Eur Ceram Soc 17:797

    Article  Google Scholar 

  46. Wilkinson DS (1998) J Am Ceram Soc 81:275

    Article  Google Scholar 

  47. Lee FJ, Bowman KJ (1992) J Am Ceram Soc 75:1748

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Xu .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 National Institute for Materials Science, Japan. Published by Springer Japan

About this chapter

Cite this chapter

Nishimura, T., Xu, X. (2015). Preparation of Nanosize Silicon-Nitride-Based Ceramics and Their Superplasticity. In: Fabrication of Heat-Resistant and Plastic-Formable Silicon Nitride. NIMS Monographs. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55384-7_2

Download citation

Publish with us

Policies and ethics