Skip to main content

The Involvement of Midkine, a Heparin-Binding Growth Factor, in Cancer Development

  • Chapter
  • First Online:
Sugar Chains
  • 932 Accesses

Abstract

Midkine is a secreted growth factor identified as a retinoic acid-induced gene in embryonal carcinoma cells. In terms of its molecular structure, a midkine consists of two domains, an N-terminal and a C-terminal domain. Previous reports have emphasized the significance of the C-terminal domain, which contains clusters of basic amino acids (clusters I and II). Cluster I is mainly responsible for the strong affinity of midkine to heparin. In addition to heparin, two other glycosaminoglycans, chondroitin sulfate and heparan sulfate, can also bind to midkine. The binding between cluster I in the C-terminal domain of midkine and glycosaminoglycans would mainly mediate the ligand-receptor interaction. Midkine is broadly expressed in various cancers and could have potential as both a tumor marker and prognostic factor. In neuroblastoma, the serum midkine level has been established as a reliable poor prognostic factor. Furthermore, it was recently revealed that midkine is physiologically involved in the tumorigenesis of neuroblastoma. Notch2 is likely to function as a receptor of midkine in neuroblastoma cells. Although anaplastic lymphoma kinase (ALK), another candidate receptor of midkine, was shown to be one of the predisposition genes of neuroblastoma, their ligand-receptor relationship in neuroblastoma has yet to be elucidated. Interestingly, it was reported that both Notch2 and ALK were glycosylated and that these glycosylations were necessary for their functions. Midkine could be an efficient molecular target in cancer therapy. Several molecular tools to target midkine have been developed, such as siRNA, antibodies, and RNA aptamers. Each of them exhibits certain therapeutic activities. Future investigation into the role of sugar chains in these activities would be of benefit. Progress in this and other matters pertaining to the clinical application of these molecular tools is eagerly anticipated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akhter S, Ichihara-Tanaka K, Kojima S et al (1998) Clusters of basic amino acids in midkine: roles in neurite-promoting activity and plasminogen activator-enhancing activity. J Biochem 123:1127–1136

    Article  CAS  PubMed  Google Scholar 

  • Aridome K, Tsutsui J, Takao S et al (1995) Increased midkine gene expression in human gastrointestinal cancers. Jpn J Cancer Res 86:655–661

    Article  CAS  PubMed  Google Scholar 

  • Asai T, Watanabe K, Ichihara-Tanaka K et al (1997) Identification of heparin-binding sites in midkine and their role in neurite-promotion. Biochem Biophys Res Commun 236:66–70

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Bu G, Takei Y et al (2007) Midkine and LDL-receptor-related protein 1 contribute to the anchorage-independent cell growth of cancer cells. J Cell Sci 120:4009–4015

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Takita J, Choi YL et al (2008) Oncogenic mutations of ALK kinase in neuroblastoma. Nature 455:971–974

    Article  CAS  PubMed  Google Scholar 

  • Dai LC, Wang X, Yao X et al (2007a) Antisense oligonucleotides targeting midkine inhibit tumor growth in an in situ human hepatocellular carcinoma model. Acta Pharmacol Sin 28:453–458

    Article  CAS  PubMed  Google Scholar 

  • Dai LC, Wang X, Yao X et al (2007b) Enhanced therapeutic effects of combined chemotherapeutic drugs and midkine antisense oligonucleotides for hepatocellular carcinoma. World J Gastroenterol 13:1989–1994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai LC, Yao X, Wang X et al (2009) In vitro and in vivo suppression of hepatocellular carcinoma growth by midkine-antisense oligonucleotide-loaded nanoparticles. World J Gastroenterol 15:1966–1972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Del Grosso F, De Mariano M, Passoni L et al (2011) Inhibition of N-linked glycosylation impairs ALK phosphorylation and disrupts pro-survival signaling in neuroblastoma cell lines. BMC Cancer 11:525–534

    Article  PubMed  PubMed Central  Google Scholar 

  • George RE, Sanda T, Hanna M et al (2008) Activating mutations in ALK provide a therapeutic target in neuroblastoma. Nature 455:975–978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Güngör C, Zander H, Effenberger KE et al (2011) Notch signaling activated by replication stress-induced expression of midkine drives epithelial-mesenchymal transition and chemoresistance in pancreatic cancer. Cancer Res 71:5009–5019

    Article  PubMed  Google Scholar 

  • Hackett CS, Hodgson JG, Law ME et al (2003) Genome-wide array CGH analysis of murine neuroblastoma reveals distinct genomic aberrations which parallel those in human tumors. Cancer Res 63:5266–5273

    CAS  PubMed  Google Scholar 

  • Ibusuki M, Fujimori H, Yamamoto Y et al (2009) Midkine in plasma as a novel breast cancer marker. Cancer Sci 100:1735–1739

    Article  CAS  PubMed  Google Scholar 

  • Ikematsu S, Yano A, Aridome K et al (2000) Serum midkine levels are increased in patients with various types of carcinomas. Br J Cancer 83:701–706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ikematsu S, Nakagawara A, Nakamura Y et al (2003) Correlation of elevated level of blood midkine with poor prognostic factors of human neuroblastomas. Br J Cancer 88:1522–1526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ikematsu S, Nakagawara A, Nakamura Y et al (2008) Plasma midkine level is a prognostic factor for human neuroblastoma. Cancer Sci 99:2070–2074

    Article  CAS  PubMed  Google Scholar 

  • Ishiguro A, Akiyama T, Adachi H et al (2011) Therapeutic potential of anti-interleukin-17A aptamer: suppression of interleukin-17A signaling and attenuation of autoimmunity in two mouse models. Arthritis Rheum 63:455–466

    Article  CAS  PubMed  Google Scholar 

  • Iwasaki W, Nagata K, Hatanaka H et al (1997) Solution structure of midkine, a new heparin-binding growth factor. EMBO J 16:6936–6946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janoueix-Lerosey I, Lequin D, Brugières L et al (2008) Somatic and germline activating mutations of the ALK kinase receptor in neuroblastoma. Nature 455:967–970

    Article  CAS  PubMed  Google Scholar 

  • Jia HL, Ye QH, Qin LX et al (2007) Gene expression profiling reveals potential biomarkers of human hepatocellular carcinoma. Clin Cancer Res 13:1133–1139

    Article  CAS  PubMed  Google Scholar 

  • Kadomatsu K, Tomomura M, Muramatsu T (1988) cDNA cloning and sequencing of a new gene intensely expressed in early differentiation stages of embryonal carcinoma cells and in mid-gestation period of mouse embryogenesis. Biochem Biophys Res Commun 151:1312–1318

    Article  CAS  PubMed  Google Scholar 

  • Kadomatsu K, Huang RP, Suganuma T et al (1990) A retinoic acid responsive gene MK found in the teratocarcinoma system is expressed in spatially and temporally controlled manner during mouse embryogenesis. J Cell Biol 110:607–616

    Article  CAS  PubMed  Google Scholar 

  • Kadomatsu K, Hagihara M, Akhter S et al (1997) Midkine induces the transformation of NIH3T3 cells. Br J Cancer 75:354–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kadomatsu K, Kishida S, Tsubota S (2014a) The heparin-binding growth factor midkine: the biological activities and candidate receptors. J Biochem 153:511–521

    Article  Google Scholar 

  • Kadomatsu K, Bencsik P, Görbe A et al (2014b) Therapeutic potential of midkine in cardiovascular disease. Br J Pharmacol 171:936–944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaneda N, Talukder AH, Ishihara M et al (1996a) Structural characteristics of heparin-line domain required for interaction of midkine with embryonic neurons. Biochem Biophys Res Commun 220:108–112

    Article  CAS  PubMed  Google Scholar 

  • Kaneda N, Talukder AH, Nishiyama H et al (1996b) Midkine, a heparin-binding growth/differentiation factor, exhibits nerve cell adhesion and guidance activity for neurite outgrowth in vitro. J Biochem 119:1150–1156

    Article  CAS  PubMed  Google Scholar 

  • Kinnunen T, Raulo E, Nolo R et al (1996) Neurite outgrowth in brain neurons induced by heparin-binding growth-associated molecule (HB-GAM) depends on the specific interaction of HB-GAM with heparan sulfate at the cell surface. J Biol Chem 271:2243–2248

    Article  CAS  PubMed  Google Scholar 

  • Kishida S, Kadomatsu K (2014) Involvement of midkine in neuroblastoma tumorigenesis. Br J Pharmacol 171:896–904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kishida S, Mu P, Miyakawa S et al (2013) Midkine promotes neuroblastoma through Notch2 signaling. Cancer Res 73:1318–1327

    Article  CAS  PubMed  Google Scholar 

  • Kojima T, Katsumi A, Yamazaki T et al (1996) Human ryudocan from endothelium-like cells binds basic fibroblast growth factor, midkine, and tissue factor pathway inhibitor. J Biol Chem 271:5914–5920

    Article  CAS  PubMed  Google Scholar 

  • Konishi N, Nakamura M, Nakaoka S et al (1999) Immunohistochemical analysis of midkine expression in human prostate carcinoma. Oncology 57:253–257

    Article  CAS  PubMed  Google Scholar 

  • Kurosawa N, Chen GY, Kadomatsu K et al (2001) Glypican-2 binds to midkine: the role of glypican-2 in neuronal cell adhesion and neurite outgrowth. Glycoconj J 18:499–507

    Article  CAS  PubMed  Google Scholar 

  • Lorente M, Torres S, Salazar M et al (2011) Stimulation of the midkine/ALK axis renders glioma cells resistant to cannabinoid antitumoral action. Cell Death Differ 18:959–973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maeda N, Ichihara-Tanaka K, Kimura T et al (1999) A receptor-like protein-tyrosine phosphatase PTPzeta/RPTPbeta binds a heparin-binding growth factor midkine. Involvement of arginine 78 of midkine in the high affinity binding to PTPzeta. J Biol Chem 274:12474–12479

    Article  CAS  PubMed  Google Scholar 

  • May P, Bock HH, Nimpf J et al (2003) Differential glycosylation regulates processing of lipoprotein receptors by gamma-secretase. J Biol Chem 278:37386–37392

    Article  CAS  PubMed  Google Scholar 

  • Mishima K, Asai A, Kadomatsu K et al (1997) Increased expression of midkine during the progression of human astrocytomas. Neurosci Lett 233:29–32

    Article  CAS  PubMed  Google Scholar 

  • Mitsiadis TA, Salmivirta M, Muramatsu T et al (1995) Expression of the heparin-binding cytokines, midkine (MK) and HB-GAM (pleiotrophin) is associated with epithelial-mesenchymal interactions during fetal development and organogenesis. Development 121:37–51

    CAS  PubMed  Google Scholar 

  • Miyakawa S, Oguro A, Ohtsu T et al (2006) RNA aptamers to mammalian initiation factor 4G inhibit cap-dependent translation by blocking the formation of initiation factor complexes. RNA 12:1825–1834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyakawa S, Nomura Y, Sakamoto T et al (2008) Structural and molecular basis for hyperspecificity of RNA aptamer to human immunoglobulin G. RNA 14:1154–1163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mossé YP, Laudenslager M, Longo L et al (2008) Identification of ALK as a major familial neuroblastoma predisposition gene. Nature 455:930–935

    Article  PubMed  PubMed Central  Google Scholar 

  • Muramatsu T (2014) Structure and function of midkine as the basis of its pharmacological effects. Br J Pharmacol 171:814–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muramatsu H, Zou K, Sakaguchi N et al (2000) LDL receptor-related protein as a component of the midkine receptor. Biochem Biophys Res Commun 270:936–941

    Article  CAS  PubMed  Google Scholar 

  • Nakagawara A, Ohira M (2004) Comprehensive genomics linking between neural development and cancer: neuroblastoma as a model. Cancer Lett 204:213–224

    Article  CAS  PubMed  Google Scholar 

  • Nakagawara A, Milbrandt J, Muramatsu T et al (1995) Differential expression of pleiotrophin and midkine in advanced neuroblastomas. Cancer Res 55:1792–1797

    CAS  PubMed  Google Scholar 

  • Nakamura E, Kadomatsu K, Yuasa S et al (1998) Disruption of the midkine gene (Mdk) resulted in altered expression of a calcium binding protein in the hippocampus of infant mice and their abnormal behaviour. Genes Cells 3:811–822

    Article  CAS  PubMed  Google Scholar 

  • Nakanishi T, Kadomatsu K, Okamoto T et al (1997) Expression of syndecan-1 and -3 during embryogenesis of the central nervous system in relation to binding with midkine. J Biochem 121:197–205

    CAS  PubMed  Google Scholar 

  • Obata Y, Kikuchi S, Lin Y et al (2005) Serum midkine concentrations and gastric cancer. Cancer Sci 96:54–56

    Article  CAS  PubMed  Google Scholar 

  • Ota K, Fujimori H, Ueda M et al (2008) Midkine as a prognostic biomarker in oral squamous cell carcinoma. Br J Cancer 99:655–662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qi M, Ikematsu S, Maeda N et al (2001) Haptotactic migration induced by midkine. Involvement of protein-tyrosine phosphatase zeta. Mitogen-activated protein kinase, and phosphatidylinositol 3-kinase. J Biol Chem 276:15868–15875

    Article  CAS  PubMed  Google Scholar 

  • Rana NA, Haltiwanger RS (2011) Fringe benefits: functional and structural impacts of O-glycosylation on the extracellular domain of Notch receptors. Curr Opin Struct Biol 21:583–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raulo E, Chernousov MA, Carey DJ (1994) Isolation of a neuronal cell surface receptor of heparin binding growth-associated molecule (HB-GAM). Identification as N-syndecan (syndecan-3). J Biol Chem 269:12999–13004

    CAS  PubMed  Google Scholar 

  • Shibata Y, Muramatsu T, Hirai M et al (2002) Nuclear targeting by the growth factor midkine. Mol Cell Biol 22:6788–6796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stoica GE, Kuo A, Powers C et al (2002) Midkine binds to anaplastic lymphoma kinase (ALK) and acts as a growth factor for different cell types. J Biol Chem 277:35990–35998

    Article  CAS  PubMed  Google Scholar 

  • Sueyoshi T, Jono H, Shinriki S et al (2012) Therapeutic approaches targeting midkine suppress tumor growth and lung metastasis in osteosarcoma. Cancer Lett 316:23–30

    Article  CAS  PubMed  Google Scholar 

  • Suzuki N, Shibata Y, Urano T et al (2004) Proteasomal degradation of the nuclear targeting growth factor midkine. J Biol Chem 279:17785–17791

    Article  CAS  PubMed  Google Scholar 

  • Takei Y, Kadomatsu K, Matsuo S et al (2001) Antisense oligodeoxynucleotide targeted to midkine, a heparin-binding growth factor, suppresses tumorigenicity of mouse rectal carcinoma cells. Cancer Res 61:8486–8491

    CAS  PubMed  Google Scholar 

  • Takei Y, Kadomatsu K, Itoh H et al (2002) 5′-, 3′-inverted thymidine-modified antisense oligodeoxynucleotide targeting midkine. Its design and application for cancer therapy. J Biol Chem 277:23800–23806

    Article  CAS  PubMed  Google Scholar 

  • Takei Y, Kadomatsu K, Yuasa K et al (2005) Morpholino antisense oligomer targeting human midkine: its application for cancer therapy. Int J Cancer 114:490–497

    Article  CAS  PubMed  Google Scholar 

  • Takei Y, Kadomatsu K, Goto T et al (2006) Combinational antitumor effect of siRNA against midkine and paclitaxel on growth of human prostate cancer xenografts. Cancer 107:864–873

    Article  CAS  PubMed  Google Scholar 

  • Tomomura M, Kadomatsu K, Nakamoto M et al (1990) A retinoic acid responsive gene, MK, produces a secreted protein with heparin binding activity. Biochem Biophys Res Commun 171:603–609

    Article  CAS  PubMed  Google Scholar 

  • Tsutsui J, Kadomatsu K, Matsubara S et al (1993) A new family of heparin-binding growth/differentiation factors: increased midkine expression in Wilms’ tumor and other human carcinomas. Cancer Res 53:1281–1285

    CAS  PubMed  Google Scholar 

  • Weiss WA, Aldape K, Mohapatra G et al (1997) Targeted expression of MYCN causes neuroblastoma in transgenic mice. EMBO J 16:2985–2995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weiss WA, Godfrey T, Francisco C et al (2000) Genome-wide screen for allelic imbalance in a mouse model for neuroblastoma. Cancer Res 60:2483–2487

    CAS  PubMed  Google Scholar 

  • Ye C, Qi M, Fan QW et al (1999) Expression of midkine in the early stage of carcinogenesis in human colorectal cancer. Br J Cancer 79:179–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou K, Muramatsu H, Ikematsu S et al (2000) A heparin-binding growth factor, midkine, binds to a chondroitin sulfate proteoglycan, PG-M/versican. Eur J Biochem 267:4046–4053

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Kishida .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Kishida, S., Kadomatsu, K. (2015). The Involvement of Midkine, a Heparin-Binding Growth Factor, in Cancer Development. In: Suzuki, T., Ohtsubo, K., Taniguchi, N. (eds) Sugar Chains. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55381-6_8

Download citation

Publish with us

Policies and ethics