Skip to main content

Gangliosides Regulate Tumor Properties: With Focus on the Suppression of Metastasis-Associated ppGalNAc-T13 with GM1

  • Chapter
  • First Online:
Sugar Chains
  • 913 Accesses

Abstract

Sialic acid-containing glycosphingolipids, gangliosides are expressed in various tissues and cells in our bodies. However, some relatively simple gangliosides are expressed in a tumor-specific manner in neuroectoderm-derived cancers and T-cell leukemias. They are also expressed in small cell lung cancers and osteosarcomas. Not only as tumor markers but as functional molecules on the cell surface membrane, they have been of interest, and indeed their roles in cancer cells have gradually been clarified. Recently, disialyl gangliosides and monosialyl gangliosides have been demonstrated to have opposite functions in the regulation of cancer properties. In particular, ganglioside GM1 showed suppressive effects on cell proliferation, invasion, and cancer metastasis in contrast with cancer-associated disialyl gangliosides such as GD3 and GD2. Based on the gene profiling with DNA array, it was demonstrated that the reduction of GM1 levels resulted in the increased expression of ppGalNAc-T13 and caused increased integrin functions, leading to enhanced metastatic potential of Lewis lung cancers. Trimeric Tn structure on syndecan-1 seems to be a key molecule to cause high metastasis. Both enhancing and suppressing actions of gangliosides on cancer properties have been shown to take place in membrane microdomains named lipid rafts. Therefore, regulatory functions of individual gangliosides in lipid rafts exerted by interacting with membrane molecules should be topics to be investigated now.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aixinjueluo W, Furukawa K, Zhang Q, Hamamura K, Tokuda N, Yoshida S, Ueda R (2005) Mechanisms for the apoptosis of small cell lung cancer cells induced by anti-GD2 monoclonal antibodies: roles of anoikis. J Biol Chem 280:29828–29836

    Article  CAS  PubMed  Google Scholar 

  • Aksoy N, Akinci OF (2004) Mucin macromolecules in normal, adenomatous, and carcinomatous colon: evidence for the neotransformation. Macromol Biosci 4:483–496

    Article  CAS  PubMed  Google Scholar 

  • Battula VL, Shi Y, Evans KW, Wang RY, Spaeth EL, Jacamo RO, Guerra R, Sahin AA, Marini FC, Hortobagyi G, Mani SA, Andreeff M (2012) Ganglioside GD2 identifies breast cancer stem cells and promotes tumorigenesis. J Clin Invest 122:2066–2078

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Berois N, Blanc E, Ripoche H, Mergui X, Trajtenberg F, Cantais S, Barrois M, Dessen P, KÃ¥gedal B, Bénard J, Osinaga E, Raguénez G (2006) ppGalNAc-T13: a new molecular marker of bone marrow involvement in neuroblastoma. Clin Chem 52:1701–1712

    Article  CAS  PubMed  Google Scholar 

  • Brockhausen I (1999) Pathways of O-glycan biosynthesis in cancer cells. Biochim Biophys Acta 1473:67–95

    Article  CAS  PubMed  Google Scholar 

  • Brooks SA, Carter TM, Bennett EP, Clausen H, Mandel U (2007) Immunolocalisation of members of the polypeptide N-acetylgalactosaminyl transferase (ppGalNAc-T) family is consistent with biologically relevant altered cell surface glycosylation in breast cancer. Acta Histochem 109:273–284

    Article  CAS  PubMed  Google Scholar 

  • Cabodi S, del Pilar Camacho-Leal M, Di Stefano P, Defilippi P (2010) Integrin signalling adaptors: not only figurants in the cancer story. Nat Rev Cancer 10:858–870

    Article  CAS  PubMed  Google Scholar 

  • Cahan LD, Irie RF, Singh R, Cassidenti A, Paulson JC (1982) Identification of a human neuroectodermal tumor antigen (OFA-I-2) as ganglioside GD2. Proc Natl Acad Sci U S A 79:7629–7633

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Carubia JM, Yu RK, Macala LJ, Kirkwood JM, Varga JM (1984) Gangliosides of normal and neoplastic human melanocytes. Biochem Biophys Res Commun 120:500–504

    Article  CAS  PubMed  Google Scholar 

  • Cazet A, Lefebvre J, Adriaenssens E, Julien S, Bobowski M, Grigoriadis A, Tutt A, Tulasne D, Le Bourhis X, Delannoy P (2010) GD3 synthase expression enhances proliferation and tumor growth of MDA-MB-231 breast cancer cells through c-Met activation. Mol Cancer Res 8:1526–1535

    Article  CAS  PubMed  Google Scholar 

  • Chen HH, Fukumoto S, Furukawa K, Nakao A, Akiyama S, Urano T (2003) Suppression of lung metastasis of mouse Lewis lung cancer P29 with transfection of the ganglioside GM2/GD2 synthase gene. Int J Cancer 103:169–176

    Article  CAS  PubMed  Google Scholar 

  • Cheresh DA, Rosenberg J, Mujoo K, Hirschowitz L, Reisfeld RA (1986) Biosynthesis and expression of the disialoganglioside GD2, a relevant target antigen on small cell lung carcinoma for monoclonal antibody-mediated cytolysis. Cancer Res 46:5112–5118

    CAS  PubMed  Google Scholar 

  • Dall’Olio F, Malagolini N, Trinchera M, Chiricolo M (2012) Mechanisms of cancer-associated glycosylation changes. Front Biosci (Landmark Ed) 17:670–699

    Article  Google Scholar 

  • Daniotti JL, Vilcaes AA, Torres Demichelis V, Ruggiero FM, Rodriguez-Walker M (2013) Glycosylation of glycolipids in cancer: basis for development of novel therapeutic approaches. Front Oncol 3:306

    Article  PubMed Central  PubMed  Google Scholar 

  • Desai AA, Zhou T, Ahmad H, Zhang W, Mu W, Trevino S, Wade MS, Raghavachari N, Kato GJ, Peters-Lawrence MH, Thiruvoipati T, Turner K, Artz N, Huang Y, Patel AR, Yuan JX, Gordeuk VR, Lang RM, Garcia JG, Machado RF (2012) A novel molecular signature for elevated tricuspid regurgitation velocity in sickle cell disease. Am J Respir Crit Care Med 186:359–368

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dippold WG, Lloyd KO, Li LT, Ikeda H, Oettgen HF, Old LJ (1980) Cell surface antigens of human malignant melanoma: definition of six antigenic systems with mouse monoclonal antibodies. Proc Natl Acad Sci U S A 77:6114–6118

    Google Scholar 

  • Dong Y, Ikeda K, Hamamura K, Zhang Q, Kondo Y, Matsumoto Y, Ohmi Y, Yamauchi Y, Furukawa K, Taguchi R (2010) GM1 / GD1b / GA1 synthase expression results in the reduced cancer phenotypes with modulation of composition and raft-localization of gangliosides in a melanoma cell line. Cancer Sci 101:2039–2047

    Article  CAS  PubMed  Google Scholar 

  • Durrant LG, Noble P, Spendlove I (2012) Immunology in the clinic review series; focus on cancer: glycolipids as targets for tumour immunotherapy. Clin Exp Immunol 167:206–215

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ferrari G, Anderson BL, Stephens RM, Kaplan DR, Greene LA (1995) Prevention of apoptotic neuronal death by GM1 ganglioside. Involvement of Trk neurotrophin receptors. J Biol Chem 270:3074–3080

    Article  CAS  PubMed  Google Scholar 

  • Fukuda M, Horibe K, Furukawa K (1998) Enhancement of in vitro and in vivo anti-tumor activity of anti-GD2 monoclonal antibody 220–51 against human neuroblastoma by granulocyte-macrophage colony-stimulating factor and granulocyte colony-stimulating factor. Int J Mol Med 2:471–475

    CAS  PubMed  Google Scholar 

  • Fukumoto S, Mutoh T, Hasegawa T, Miyazaki H, Okada M, Goto G, Furukawa K, Urano T (2000) GD3 synthase gene expression in PC12 cells results in the continuous activation of TrkA and ERK1/2 and enhanced proliferation. J Biol Chem 275:5832–5838

    Article  CAS  PubMed  Google Scholar 

  • Furukawa K, Lloyd KO (1990) Gangliosides in melanoma. In: Ferrone S (ed) Human melanoma: from basic research to clinical application. Springer, Heidelberg, pp 15–30

    Chapter  Google Scholar 

  • Furukawa K, Akagi T, Nagata Y, Yamada Y, Shimotohno K, Cheung NK, Shiku H (1993) GD2 ganglioside on human T-lymphotropic virus type I-infected T cells: possible activation of beta-1,4-N-acetylgalactosaminyltransferase gene by p40tax. Proc Natl Acad Sci U S A 90:1972–1976

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Furukawa K, Hamamura K, Aixinjueluo W (2006) Biosignals modulated by tumor-associated carbohydrate antigens: novel targets for cancer therapy. Ann N Y Acad Sci 1086:185–198

    Article  CAS  PubMed  Google Scholar 

  • Furukawa K, Hamamura K, Nakashima H (2008) Molecules in the signaling pathway activated by gangliosides can be targets of therapeutics for malignant melanomas. Proteomics 8:3312–3316

    Article  CAS  PubMed  Google Scholar 

  • Furukawa K, Hamamura K, Ohkawa Y, Ohmi Y (2012a) Disialyl gangliosides enhance tumor phenotypes with differential modalities. Glycoconj J 29:579–584

    Article  CAS  PubMed  Google Scholar 

  • Furukawa K, Ohkawa Y, Yamauchi Y, Hamamura K, Ohmi Y (2012b) Fine tuning of cell signals by glycosylation. J Biochem 151:573–578

    Article  CAS  PubMed  Google Scholar 

  • Furukawa K, Kambe M, Miyata M, Ohkawa Y, Tajima O (2014) Ganglioside GD3 induces convergence and synergism of adhesion and hepatocyte growth factor/Met signals in melanomas. Cancer Sci 105:52–63

    Article  CAS  PubMed  Google Scholar 

  • Grant SC, Kostakoglu L, Kris MG, Yeh SD, Larson SM, Finn RD, Oettgen HF, Cheung NV (1996) Targeting of small-cell lung cancer using the anti-GD2 ganglioside monoclonal antibody 3 F8: a pilot trial. Eur J Nucl Med 23:145–149

    Article  CAS  PubMed  Google Scholar 

  • Greene LA, Tischler AS (1976) Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc Natl Acad Sci U S A 73:2424–2428

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hakomori S (1985) Aberrant glycosylation in cancer cell membranes as focused on glycolipids: overview and perspectives. Cancer Res 45:2405–2414

    CAS  PubMed  Google Scholar 

  • Hakomori S (2002) Glycosylation defining cancer malignancy: new wine in an old bottle. Proc Natl Acad Sci U S A 99:10231–10233

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hakomori SI (2010) Glycosynaptic microdomains controlling tumor cell phenotype through alteration of cell growth, adhesion, and motility. FEBS Lett 584:1901–1906

    Article  CAS  PubMed  Google Scholar 

  • Hakomori S, Handa K (2002) Glycosphingolipid-dependent cross-talk between glycosynapses interfacing tumor cells with their host cells: essential basis to define tumor malignancy. FEBS Lett 531:88–92

    Article  CAS  PubMed  Google Scholar 

  • Hakomori S, Yamamura S, Handa AK (1998) Signal transduction through glyco(sphingo)lipids. Introduction and recent studies on glyco(sphingo)lipid-enriched microdomains. Ann N Y Acad Sci 845:1–10

    Article  CAS  PubMed  Google Scholar 

  • Hamamura K, Furukawa K, Hayashi T, Hattori T, Nakano J, Nakashima H, Okuda T, Mizutani H, Hattori H, Ueda M, Urano T, Lloyd KO (2005) Ganglioside GD3 promotes cell growth and invasion through p130Cas and paxillin in malignant melanoma cells. Proc Natl Acad Sci U S A 102:11041–11046

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hamamura K, Tsuji M, Ohkawa Y, Nakashima H, Miyazaki S, Urano T, Yamamoto N, Ueda M, Furukawa K (2008) Focal adhesion kinase as well as p130Cas and paxillin is crucially involved in the enhanced malignant properties under expression of ganglioside GD3 in melanoma cells. Biochim Biophys Acta 1780:513–519

    Article  CAS  PubMed  Google Scholar 

  • Hamamura K, Tsuji M, Hotta H, Ohkawa Y, Takahashi M, Shibuya H, Nakashima H, Yamauchi Y, Hashimoto N, Hattori H, Ueda M, Furukawa K (2011) Functional activation of Src family kinase yes protein is essential for the enhanced malignant properties of human melanoma cells expressing ganglioside GD3. J Biol Chem 286:18526–18537

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hanibuchi M, Yano S, Nishioka Y, Yanagawa H, Sone S (1996) Anti-ganglioside GM2 monoclonal antibody-dependent killing of human lung cancer cells by lymphocytes and monocytes. Jpn J Cancer Res 87:497–504

    Article  CAS  PubMed  Google Scholar 

  • Haraguchi M, Yamashiro S, Yamamoto A, Furukawa K, Takamiya K, Lloyd KO, Shiku H (1994) Isolation of GD3 synthase gene by expression cloning of GM3 alpha-2,8-sialyltransferase cDNA using anti-GD2 monoclonal antibody. Proc Natl Acad Sci U S A 91:10455–10459

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hashimoto N, Hamamura K, Kotani N, Furukawa K, Kaneko K, Honke K, Furukawa K (2012) Proteomic analysis of ganglioside-associated membrane molecules: substantial basis for molecular clustering. Proteomics 12:3154–3163

    Article  CAS  PubMed  Google Scholar 

  • Heiner JP, Miraldi F, Kallick S, Makley J, Neely J, Smith-Mensah WH, Cheung NK (1987) Localization of GD2-specific monoclonal antibody 3 F8 in human osteosarcoma. Cancer Res 47:5377–5381

    CAS  PubMed  Google Scholar 

  • Hollingsworth MA, Swanson BJ (2004) Mucins in cancer: protection and control of the cell surface. Nat Rev Cancer 4:45–60

    Article  CAS  PubMed  Google Scholar 

  • Irie RF, Morton DL (1986) Regression of cutaneous metastatic melanoma by intralesional injection with human monoclonal antibody to ganglioside GD2. Proc Natl Acad Sci U S A 83:8694–8698

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Irie RF, Matsuki T, Morton DL (1989) Human monoclonal antibody to ganglioside GM2 for melanoma treatment. Lancet 1:786–787

    Article  CAS  PubMed  Google Scholar 

  • Ju T, Otto VI, Cummings RD (2011) The Tn antigen-structural simplicity and biological complexity. Angew Chem Int Ed Engl 50:1770–1791

    Article  CAS  PubMed  Google Scholar 

  • Ju T, Wang Y, Aryal RP, Lehoux SD, Ding X, Kudelka MR, Cutler C, Zeng J, Wang J, Sun X, Heimburg-Molinaro J, Smith DF, Cummings RD (2013) Tn and sialyl-Tn antigens, aberrant O-glycomics as human disease markers. Proteomics Clin Appl 7:618–631

    CAS  PubMed  Google Scholar 

  • Lloyd KO, Old LJ (1989) Human monoclonal antibodies to glycolipids and other carbohydrate antigens: dissection of the humoral immune response in cancer patients. Cancer Res 49:3445–3451

    CAS  PubMed  Google Scholar 

  • Margadant C, Monsuur HN, Norman JC, Sonnenberg A (2011) Mechanisms of integrin activation and trafficking. Curr Opin Cell Biol 23:607–614

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto Y, Zhang Q, Akita K, Nakada H, Hamamura K, Tokuda N, Tsuchida A, Matsubara T, Hori T, Okajima T, Furukawa K, Urano T (2012) pp-GalNAc-T13 induces high metastatic potential of murine Lewis lung cancer by generating trimeric Tn antigen. Biochem Biophys Res Commun 419:7–13

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto Y, Zhang Q, Akita K, Nakada H, Hamamura K, Tsuchida A, Okajima T, Furukawa K, Urano T (2013) Trimeric Tn antigen on syndecan 1 produced by ppGalNAc-T13 enhances cancer metastasis via a complex formation with integrin α5β1 and matrix metalloproteinase 9. J Biol Chem 288:24264–24276

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Matsumoto-Takasaki A, Hanashima S, Aoki A, Yuasa N, Ogawa H, Sato R, Kawakami H, Mizuno M, Nakada H, Yamaguchi Y, Fujita-Yamaguchi Y (2012) Surface plasmon resonance and NMR analyses of anti Tn-antigen MLS128 monoclonal antibody binding to two or three consecutive Tn-antigen clusters. J Biochem 151:273–282

    Article  CAS  PubMed  Google Scholar 

  • Matthay KK, George RE, Yu AL (2012) Promising therapeutic targets in neuroblastoma. Clin Cancer Res 18:2740–2753

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Meng X, Zhong J, Liu S, Murray M, Gonzalez-Angulo AM (2012) A new hypothesis for the cancer mechanism. Cancer Metastasis Rev 31:247–268

    Article  CAS  PubMed  Google Scholar 

  • Merritt WD, Casper JT, Lauer SJ, Reaman GH (1987) Expression of GD3 ganglioside in childhood T-cell lymphoblastic malignancies. Cancer Res 47:1724–1730

    CAS  PubMed  Google Scholar 

  • Mitsuda T, Furukawa K, Fukumoto S, Miyazaki H, Urano T (2002) Overexpression of ganglioside GM1 results in the dispersion of platelet-derived growth factor receptor from glycolipid-enriched microdomains and in the suppression of cell growth signals. J Biol Chem 277:11239–11246

    Article  CAS  PubMed  Google Scholar 

  • Miyata M, Ichihara M, Tajima O, Sobue S, Kambe M, Sugiura K, Furukawa K (2014) UVB-irradiated keratinocytes induce melanoma-associated ganglioside GD3 synthase gene in melanocytes via secretion of tumor necrosis factor α and interleukin 6. Biochem Biophys Res Commun 445:504–510

    Article  CAS  PubMed  Google Scholar 

  • Miyazaki H, Fukumoto S, Okada M, Hasegawa T, Furukawa K (1997) Expression cloning of rat cDNA encoding UDP-galactose:GD2 beta1,3-galactosyltransferase that determines the expression of GD1b/GM1/GA1. J Biol Chem 272:24794–24799

    Article  CAS  PubMed  Google Scholar 

  • Morita N, Yajima Y, Asanuma H, Nakada H, Fujita-Yamaguchi Y (2009) Inhibition of cancer cell growth by anti-Tn monoclonal antibody MLS128. Biosci Trends 3:32–37

    CAS  PubMed  Google Scholar 

  • Munesue S, Kusano Y, Oguri K, Itano N, Yoshitomi Y, Nakanishi H, Yamashina I, Okayama M (2002) The role of syndecan-2 in regulation of actin-cytoskeletal organization of Lewis lung carcinoma-derived metastatic clones. Biochem J 363:201–209

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Munesue S, Yoshitomi Y, Kusano Y, Koyama Y, Nishiyama A, Nakanishi H, Miyazaki K, Ishimaru T, Miyaura S, Okayama M, Oguri K (2007) A novel function of syndecan-2, suppression of matrix metalloproteinase-2 activation, which causes suppression of metastasis. J Biol Chem 282:28164–28174

    Article  CAS  PubMed  Google Scholar 

  • Mutoh T, Tokuda A, Miyadai T, Hamaguchi M, Fujiki N (1995) Ganglioside GM1 binds to the Trk protein and regulates receptor function. Proc Natl Acad Sci U S A 92:5087–5091

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nakada H, Inoue M, Numata Y, Tanaka N, Funakoshi I, Fukui S, Yamashina I (1992) Cancer-associated glycoproteins defined by a monoclonal antibody, MLS 128, recognizing the Tn antigen. Biochem Biophys Res Commun 187:217–224

    Article  CAS  PubMed  Google Scholar 

  • Nakashima H, Hamamura K, Houjou T, Taguchi R, Yamamoto N, Mitsudo K, Tohnai I, Ueda M, Urano T, Furukawa K (2007) Overexpression of caveolin-1 in a human melanoma cell line results in dispersion of ganglioside GD3 from lipid rafts and alteration of leading edges, leading to attenuation of malignant properties. Cancer Sci 98:512–520

    Article  CAS  PubMed  Google Scholar 

  • Nishio M, Fukumoto S, Furukawa K, Ichimura A, Miyazaki H, Kusunoki S, Urano T, Furukawa K (2004) Overexpressed GM1 suppresses nerve growth factor (NGF) signals by modulating the intracellular localization of NGF receptors and membrane fluidity in PC12 cells. J Biol Chem 279:33368–33378

    Article  CAS  PubMed  Google Scholar 

  • Nishio M, Fukumoto S, Furukawa K, Ichimura A, Miyazaki H, Kusunoki S, Urano T (2004) Overexpressed GM1 suppresses nerve growth factor (NGF) signals by modulating the intracellular localization of NGF receptors and membrane fluidity in PC12 cells. J Biol Chem 279:33368–33378

    Article  CAS  PubMed  Google Scholar 

  • Ohkawa Y, Miyazaki S, Miyata M, Hamamura K, Furukawa K (2008) Essential roles of integrin-mediated signaling for the enhancement of malignant properties of melanomas based on the expression of GD3. Biochem Biophys Res Commun 373:14–19

    Article  CAS  PubMed  Google Scholar 

  • Ohkawa Y, Miyazaki S, Hamamura K, Kambe M, Miyata M, Tajima O, Ohmi Y, Yamauchi Y, Furukawa K (2010) Ganglioside GD3 enhances adhesion signals and augments malignant properties of melanoma cells by recruiting integrins to glycolipid-enriched microdomains. J Biol Chem 285:27213–27223

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ohshio G, Imamura T, Imamura M, Yamabe H, Sakahara H, Nakada H, Yamashina I (1995) Distribution of Tn antigen recognized by an anti-Tn monoclonal antibody (MLS128) in normal and malignant tissues of the digestive tract. J Cancer Res Clin Oncol 121:247–252

    Article  CAS  PubMed  Google Scholar 

  • Okada M, Furukawa K, Yamashiro S, Yamada Y, Haraguchi M, Horibe K, Kato K, Tsuji Y (1996) High expression of ganglioside alpha-2,8-sialyltransferase (GD3 synthase) gene in adult T-cell leukemia cells unrelated to the gene expression of human T-lymphotropic virus type I. Cancer Res 56:2844–2848

    CAS  PubMed  Google Scholar 

  • Old LJ (1981) Cancer immunology: the search for specificity – G. H. A. Clowes Memorial lecture. Cancer Res 41:361–375

    CAS  PubMed  Google Scholar 

  • Parsons K, Bernhardt B, Strickland B (2013) Targeted immunotherapy for high-risk neuroblastoma – the role of monoclonal antibodies. Ann Pharmacother 47:210–218

    Article  PubMed  Google Scholar 

  • Patra SK (2008) Dissecting lipid raft facilitated cell signaling pathways in cancer. Biochim Biophys Acta 1785:182–206

    CAS  PubMed  Google Scholar 

  • Peinado H et al (2012) Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med 18:883–891

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Portoukalian J, Zwingelstein G, Doré JF (1979) Lipid composition of human malignant melanoma tumors at various levels of malignant growth. Eur J Biochem 94:19–23

    Article  CAS  PubMed  Google Scholar 

  • Pukel CS, Lloyd KO, Travassos LR, Dippold WG, Oettgen HF, Old LJ (1982) GD3, a prominent ganglioside of human melanoma. Detection and characterisation by mouse monoclonal antibody. J Exp Med 155:1133–1147

    Article  CAS  PubMed  Google Scholar 

  • Quann K, Gonzales DM, Mercier I, Wang C, Sotgia F, Pestell RG, Lisanti MP, Jasmin JF (2013) Caveolin-1 is a negative regulator of tumor growth in glioblastoma and modulates chemosensitivity to temozolomide. Cell Cycle 12:1510–1520

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Raffaghello L, Marimpietri D, Pagnan G, Pastorino F, Cosimo E, Brignole C, Ponzoni M, Montaldo PG (2003) Anti-GD2 monoclonal antibody immunotherapy: a promising strategy in the prevention of neuroblastoma relapse. Cancer Lett 197:205–209

    Article  CAS  PubMed  Google Scholar 

  • Ravindranath MH, Tsuchida T, Morton DL, Irie RF (1991) Ganglioside GM3:GD3 ratio as an index for the management of melanoma. Cancer 67:3029–3035

    Article  CAS  PubMed  Google Scholar 

  • Razani B, Schlegel A, Liu J, Lisanti MP (2001) Caveolin-1, a putative tumour suppressor gene. Biochem Soc Trans 29:494–499

    Article  CAS  PubMed  Google Scholar 

  • Saito M, Yu RK, Cheung NK (1985) Ganglioside GD2 specificity of monoclonal antibodies to human neuroblastoma cell. Biochem Biophys Res Commun 127:1–7

    Article  CAS  PubMed  Google Scholar 

  • Shibuya H, Hamamura K, Hotta H, Matsumoto Y, Nishida Y, Hattori H, Furukawa K, Ueda M (2012) Enhancement of malignant properties of human osteosarcoma cells with disialyl gangliosides GD2/GD3. Cancer Sci 103:1656–1664

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui B, Buehler J, DeGregorio MW, Macher BA (1984) Differential expression of ganglioside GD3 by human leukocytes and leukemia cells. Cancer Res 44:5262–5265

    CAS  PubMed  Google Scholar 

  • Simons K, Gerl MJ (2010) Revitalizing membrane rafts: new tools and insights. Nat Rev Mol Cell Biol 11:688–699

    Article  CAS  PubMed  Google Scholar 

  • Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387:569–572

    Article  CAS  PubMed  Google Scholar 

  • Takenaga K (1986) Modification of the metastatic potential of tumor cells by drugs. Cancer Metastasis Rev 5:67–75

    Article  CAS  PubMed  Google Scholar 

  • Thurin J, Thurin M, Herlyn M, Elder DE, Steplewski Z, Clark WH, Koprowski H (1986) GD2 ganglioside biosynthesis is a distinct biochemical event in human melanoma tumor progression. FEBS Lett 208:17–22

    Article  CAS  PubMed  Google Scholar 

  • Watanabe T, Pukel CS, Takeyama H, Lloyd KO, Shiku H, Li LT, Travassos LR, Oettgen HF, Old LJ (1982) Human melanoma antigen AH is an autoantigenic ganglioside related to GD2. J Exp Med 156:1884–1889

    Google Scholar 

  • Vaudry D, Stork PJ, Lazarovici P, Eiden LE (2002) Signaling pathways for PC12 cell differentiation: making the right connections. Science 296:1648–1649

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Richards DA (2011) Spatial regulation of exocytic site and vesicle mobilization by the actin cytoskeleton. PLoS One 6:e29162

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Welte K, Miller G, Chapman PB, Yuasa H, Natoli E, Kunicka JE, Cordon-Cardo C, Buhrer C, Old LJ, Houghton AN (1987) Stimulation of T lymphocyte proliferation by monoclonal antibodies against GD3 ganglioside. J Immunol 139:1763–1771

    CAS  PubMed  Google Scholar 

  • Yamaguchi H, Furukawa K, Fortunato SR, Livingston PO, Lloyd KO, Oettgen HF, Old LJ (1987) Cell-surface antigens of melanoma recognized by human monoclonal antibodies. Proc Natl Acad Sci U S A 84:2416–2420

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yamaguchi H, Furukawa K, Fortunato SR, Livingston PO, Lloyd KO, Oettgen HF, Old LJ (1990) Human monoclonal antibody with dual GM2/GD2 specificity derived from an immunized melanoma patient. Proc Natl Acad Sci U S A 87:3333–3337

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yamashiro S, Okada M, Haraguchi M, Furukawa K, Lloyd KO, Shiku H (1995) Expression of alpha 2,8-sialyltransferase (GD3 synthase) gene in human cancer cell lines: high level expression in melanomas and up-regulation in activated T lymphocytes. Glycoconj J 12:894–900

    Article  CAS  PubMed  Google Scholar 

  • Yanagisawa M, Taga T, Nakamura K, Ariga T, Yu RK (2005) Characterization of glycoconjugate antigens in mouse embryonic neural precursor cells. J Neurochem 95:1311–1320

    Article  CAS  PubMed  Google Scholar 

  • Yilmaz YE, Lawless JF, Andrulis IL, Bull SB (2013) Insights from mixture cure modeling of molecular markers for prognosis in breast cancer. J Clin Oncol 31:2047–2054

    Article  PubMed  Google Scholar 

  • Yoon SJ, Nakayama K, Hikita T, Handa K, Hakomori SI (2005) Epidermal growth factor receptor tyrosine kinase is modulated by GM3 interaction with N-linked GlcNAc termini of the receptor. Proc Natl Acad Sci U S A 103:18987–18991

    Article  Google Scholar 

  • Yoshida S, Fukumoto S, Kawaguchi H, Sato S, Ueda R, Furukawa K (2001) Ganglioside G(D2) in small cell lung cancer cell lines: enhancement of cell proliferation and mediation of apoptosis. Cancer Res 61:4244–4252

    CAS  PubMed  Google Scholar 

  • Yoshida S, Kawaguchi H, Sato S, Ueda R, Furukawa K (2002) An anti-GD2 monoclonal antibody enhances apoptotic effects of anti-cancer drugs against small cell lung cancer cells via JNK (c-Jun terminal kinase) activation. Jpn J Cancer Res 93:816–824

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Cordon-Cardo C, Zhang HS, Reuter VE, Adluri S, Hamilton WB, Lloyd KO, Livingston PO (1997) Selection of tumor antigens as targets for immune attack using immunohistochemistry: I. Focus on gangliosides. Int J Cancer 73:42–49

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Iwasaki H, Wang H, Kudo T, Kalka TB, Hennet T, Kubota T, Cheng L, Inaba N, Gotoh M, Togayachi A, Guo J, Hisatomi H, Nakajima K, Nishihara S, Nakamura M, Marth JD, Narimatsu H (2003) Cloning and characterization of a new human UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase, designated pp-GalNAc-T13, that is specifically expressed in neurons and synthesizes GalNAc alpha-serine/threonine antigen. J Biol Chem 278:573–584

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Furukawa K, Chen HH, Sakakibara T, Urano T (2006) Metastatic potential of mouse Lewis lung cancer cells is regulated via ganglioside GM1 by modulating the matrix metalloprotease-9 localization in lipid rafts. J Biol Chem 281:18145–18155

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koichi Furukawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Furukawa, K., Matsumoto, Y., Zhang, Q., Furukawa, K. (2015). Gangliosides Regulate Tumor Properties: With Focus on the Suppression of Metastasis-Associated ppGalNAc-T13 with GM1. In: Suzuki, T., Ohtsubo, K., Taniguchi, N. (eds) Sugar Chains. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55381-6_4

Download citation

Publish with us

Policies and ethics