Skip to main content

Gangliosides and T-Cell Immunity

  • Chapter
  • First Online:
Sugar Chains

Abstract

Gangliosides are sialic acid-containing glycosphingolipids separated into several series on the basis of the absence or presence of one or more sialic acid residues linked to the galactose residue in the second position from the ceramide backbone. Gangliosides are fundamental constituents of lipid rafts in eukaryotic cell membranes and are considered to play a variety of roles in cell physiology such as modulation of signal transduction. As with gangliosides, T cells, key players of the adaptive immune response, are phenotypically divided into several subpopulations, and each of them preferentially expresses differential series of gangliosides. Recent studies have shown that the differential ganglioside expression is likely to contribute to the appropriate lipid raft structures for T-cell activation via the antigen receptor, T-cell receptor. Furthermore, the abnormal ganglioside levels in T cells are associated with the pathogenesis of autoimmune and allergic disorders. Therefore, a variety of lipid rafts with different gangliosides are conceivably formed on the plasma membrane of individual T-cell subsets, suggesting the regulation of gangliosides is a therapeutic target for immune system diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alarcon B, Mestre D, Martinez Martin N (2011) The immunological synapse: a cause or consequence of T-cell receptor triggering? Immunology 133:420–425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allende ML, Dreier JL, Mandala S, Proia RL (2004) Expression of the sphingosine 1-phosphate receptor, S1P1, on T-cells controls thymic emigration. J Biol Chem 279:15396–15401

    Article  CAS  PubMed  Google Scholar 

  • Balamuth F, Leitenberg D, Unternaehrer J, Mellman I, Bottomly K (2001) Distinct patterns of membrane microdomain partitioning in Th1 and th2 cells. Immunity 15:729–738

    Article  CAS  PubMed  Google Scholar 

  • Barbat C, Trucy M, Sorice M, Garofalo T, Manganelli V, Fischer A, Mazerolles F (2007) p56lck, LFA-1 and PI3K but not SHP-2 interact with GM1- or GM3-enriched microdomains in a CD4-p56lck association-dependent manner. Biochem J 402:471–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bi K, Tanaka Y, Coudronniere N, Sugie K, Hong S, van Stipdonk MJ, Altman A (2001) Antigen-induced translocation of PKC-theta to membrane rafts is required for T cell activation. Nat Immunol 2:556–563

    Article  CAS  PubMed  Google Scholar 

  • Boehm T, Bleul CC (2006) Thymus-homing precursors and the thymic microenvironment. Trends Immunol 27:477–484

    Article  CAS  PubMed  Google Scholar 

  • Brown DA, London E (1998) Structure and origin of ordered lipid domains in biological membranes. J Membr Biol 164:103–114

    Article  CAS  PubMed  Google Scholar 

  • Chang JT, Palanivel VR, Kinjyo I, Schambach F, Intlekofer AM, Banerjee A, Longworth SA, Vinup KE, Mrass P et al (2007) Asymmetric T lymphocyte division in the initiation of adaptive immune responses. Science 315:1687–1691

    Article  CAS  PubMed  Google Scholar 

  • Cuatrecasas P (1973) Interaction of Vibrio cholerae enterotoxin with cell membranes. Biochemistry 12:3547–3558

    Article  CAS  PubMed  Google Scholar 

  • Davis DM, Dustin ML (2004) What is the importance of the immunological synapse? Trends Immunol 25:323–327

    Article  CAS  PubMed  Google Scholar 

  • de Mello Coelho V, Nguyen D, Giri B, Bunbury A, Schaffer E, Taub DD (2004) Quantitative differences in lipid raft components between murine CD4+ and CD8+ T cells. BMC Immunol 5:2

    Article  PubMed  PubMed Central  Google Scholar 

  • Degroote S, Wolthoorn J, van Meer G (2004) The cell biology of glycosphingolipids. Semin Cell Dev Biol 15:375–387

    Article  CAS  PubMed  Google Scholar 

  • Dong L, Hu S, Chen F, Lei X, Tu W, Yu Y, Yang L, Sun W, Yamaguchi T et al (2010) Increased expression of ganglioside GM1 in peripheral CD4+ T cells correlates soluble form of CD30 in systemic lupus erythematosus patients. J Biomed Biotechnol 2010:569053

    Article  PubMed  PubMed Central  Google Scholar 

  • Dykstra M, Cherukuri A, Sohn HW, Tzeng SJ, Pierce SK (2003) Location is everything: lipid rafts and immune cell signaling. Annu Rev Immunol 21:457–481

    Article  CAS  PubMed  Google Scholar 

  • Fooksman DR, Vardhana S, Vasiliver-Shamis G, Liese J, Blair DA, Waite J, Sacristan C, Victora GD, Zanin-Zhorov A et al (2010) Functional anatomy of T cell activation and synapse formation. Annu Rev Immunol 28:79–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garofalo T, Lenti L, Longo A, Misasi R, Mattei V, Pontieri GM, Pavan A, Sorice M (2002) Association of GM3 with Zap-70 induced by T cell activation in plasma membrane microdomains: GM3 as a marker of microdomains in human lymphocytes. J Biol Chem 277:11233–11238

    Article  CAS  PubMed  Google Scholar 

  • Gerlach C, van Heijst JW, Swart E, Sie D, Armstrong N, Kerkhoven RM, Zehn D, Bevan MJ, Schepers K et al (2010) One naive T cell, multiple fates in CD8+ T cell differentiation. J Exp Med 207:1235–1246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gizinski AM, Fox DA (2014) T cell subsets and their role in the pathogenesis of rheumatic disease. Curr Opin Rheumatol 26:204–210

    Article  CAS  PubMed  Google Scholar 

  • Gomez-Mouton C, Abad JL, Mira E, Lacalle RA, Gallardo E, Jimenez-Baranda S, Illa I, Bernad A, Manes S et al (2001) Segregation of leading-edge and uropod components into specific lipid rafts during T cell polarization. Proc Natl Acad Sci U S A 98:9642–9647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greenwald RJ, Freeman GJ, Sharpe AH (2005) The B7 family revisited. Annu Rev Immunol 23:515–548

    Article  PubMed  Google Scholar 

  • Hakomori SI (2002) The glycosynapse. Proc Natl Acad Sci U S A 99:225–232

    Article  CAS  PubMed Central  Google Scholar 

  • Hakomori SI (2008) Structure and function of glycosphingolipids and sphingolipids: recollections and future trends. Biochim Biophys Acta 1780:325–346

    Article  CAS  PubMed  Google Scholar 

  • Hamid Q, Tulic M (2009) Immunobiology of asthma. Annu Rev Physiol 71:489–507

    Article  CAS  PubMed  Google Scholar 

  • Harder T, Rentero C, Zech T, Gaus K (2007) Plasma membrane segregation during T cell activation: probing the order of domains. Curr Opin Immunol 19:470–475

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto Tane A, Yokosuka T, Ishihara C, Sakuma M, Kobayashi W, Saito T (2010) T-cell receptor microclusters critical for T-cell activation are formed independently of lipid raft clustering. Mol Cell Biol 30:3421–3429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holgate ST (2011) Pathophysiology of asthma: what has our current understanding taught us about new therapeutic approaches? J Allergy Clin Immunol 128:495–505

    Article  CAS  PubMed  Google Scholar 

  • Huppa JB, Davis MM (2003) T-cell-antigen recognition and the immunological synapse. Nat Rev Immunol 3:973–983

    Article  CAS  PubMed  Google Scholar 

  • Inokuchi J (2011) Inhibition of ganglioside biosynthesis as a novel therapeutic approach in insulin resistance. Handb Exp Pharmacol 203: 165–178

    Google Scholar 

  • Izsepi E, Himer L, Szilagyi O, Hajdu P, Panyi G, Laszlo G, Matko J (2013) Membrane microdomain organization, calcium signal, and NFAT activation as an important axis in polarized Th cell function. Cytometry A 83:185–196

    Article  PubMed  Google Scholar 

  • Jury EC, Kabouridis PS, Flores-Borja F, Mageed RA, Isenberg DA (2004) Altered lipid raft-associated signaling and ganglioside expression in T lymphocytes from patients with systemic lupus erythematosus. J Clin Invest 113:1176–1187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kabayama K, Sato T, Saito K, Loberto N, Prinetti A, Sonnino S, Kinjo M, Igarashi Y, Inokuchi J (2007) Dissociation of the insulin receptor and caveolin-1 complex by ganglioside GM3 in the state of insulin resistance. Proc Natl Acad Sci U S A 104:13678–13683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kabouridis PS, Jury EC (2008) Lipid rafts and T-lymphocyte function: implications for autoimmunity. FEBS Lett 582:3711–3718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karman J, Tedstone JL, Gumlaw NK, Zhu Y, Yew N, Siegel C, Guo S, Siwkowski A, Ruzek M et al (2010) Reducing glycosphingolipid biosynthesis in airway cells partially ameliorates disease manifestations in a mouse model of asthma. Int Immunol 22:593–603

    Article  CAS  PubMed  Google Scholar 

  • Kidani Y, Bensinger SJ (2014) Lipids rule: resetting lipid metabolism restores T cell function in systemic lupus erythematosus. J Clin Invest 124:482–485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiguchi K, Henning-Chubb CB, Huberman E (1990) Glycosphingolipid patterns of peripheral blood lymphocytes, monocytes, and granulocytes are cell specific. J Biochem 107:8–14

    Article  CAS  PubMed  Google Scholar 

  • King CG, Koehli S, Hausmann B, Schmaler M, Zehn D, Palmer E (2012) T cell affinity regulates asymmetric division, effector cell differentiation, and tissue pathology. Immunity 37:709–720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobezda T, Ghassemi Nejad S, Mikecz K, Glant TT, Szekanecz Z (2014) Of mice and men: how animal models advance our understanding of T-cell function in RA. Nat Rev Rheumatol 10:160–170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kosaka A, Wakita D, Matsubara N, Togashi Y, Nishimura S, Kitamura H, Nishimura T (2007) AsialoGM1+CD8+ central memory-type T cells in unimmunized mice as novel immunomodulator of IFN-gamma-dependent type 1 immunity. Int Immunol 19:249–256

    Article  CAS  PubMed  Google Scholar 

  • Kovacs B, Maus MV, Riley JL, Derimanov GS, Koretzky GA, June CH, Finkel TH (2002) Human CD8+ T cells do not require the polarization of lipid rafts for activation and proliferation. Proc Natl Acad Sci U S A 99:15006–15011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krishnan S, Nambiar MP, Warke VG, Fisher CU, Mitchell J, Delaney N, Tsokos GC (2004) Alterations in lipid raft composition and dynamics contribute to abnormal T cell responses in systemic lupus erythematosus. J Immunol 172:7821–7831

    Article  CAS  PubMed  Google Scholar 

  • Kroczek RA, Mages HW, Hutloff A (2004) Emerging paradigms of T-cell co-stimulation. Curr Opin Immunol 16:321–327

    Article  CAS  PubMed  Google Scholar 

  • Kupfer A, Kupfer H (2003) Imaging immune cell interactions and functions: SMACs and the Immunological Synapse. Semin Immunol 15:295–300

    Article  CAS  PubMed  Google Scholar 

  • Kuziemko GM, Stroh M, Stevens RC (1996) Cholera toxin binding affinity and specificity for gangliosides determined by surface plasmon resonance. Biochemistry 35:6375–6384

    Article  CAS  PubMed  Google Scholar 

  • Ladi E, Yin X, Chtanova T, Robey EA (2006) Thymic microenvironments for T cell differentiation and selection. Nat Immunol 7:338–343

    Article  CAS  PubMed  Google Scholar 

  • Leitenberg D, Balamuth F, Bottomly K (2001) Changes in the T cell receptor macromolecular signaling complex and membrane microdomains during T cell development and activation. Semin Immunol 13:129–138

    Article  CAS  PubMed  Google Scholar 

  • Levine SJ, Wenzel SE (2010) Narrative review: the role of Th2 immune pathway modulation in the treatment of severe asthma and its phenotypes. Ann Intern Med 152:232–237

    Article  PubMed  PubMed Central  Google Scholar 

  • Li Y, Yin Y, Mariuzza RA (2013) Structural and biophysical insights into the role of CD4 and CD8 in T cell activation. Front Immunol 4:206

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu YY, Hill RA, Li YT (2013) Ceramide glycosylation catalyzed by glucosylceramide synthase and cancer drug resistance. Adv Cancer Res 117:59–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lloyd CM, Hessel EM (2010) Functions of T cells in asthma: more than just T(H)2 cells. Nat Rev Immunol 10:838–848

    Article  CAS  PubMed  Google Scholar 

  • Marrack P, Scott Browne JP, Dai S, Gapin L, Kappler JW (2008) Evolutionarily conserved amino acids that control TCR-MHC interaction. Annu Rev Immunol 26:171–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marusic A, Markotic A, Kovacic N, Muthing J (2004) Expression of glycosphingolipids in lymph nodes of mice lacking TNF receptor 1: biochemical and flow cytometry analysis. Carbohydr Res 339:77–86

    Article  CAS  PubMed  Google Scholar 

  • Masserini M, Freire E, Palestini P, Calappi E, Tettamanti G (1992) Fuc-GM1 ganglioside mimics the receptor function of GM1 for cholera toxin. Biochemistry 31:2422–2426

    Article  CAS  PubMed  Google Scholar 

  • McDonald G, Deepak S, Miguel L, Hall CJ, Isenberg DA, Magee AI, Butters T, Jury EC (2014) Normalizing glycosphingolipids restores function in CD4+ T cells from lupus patients. J Clin Invest 124:712–724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McInnes IB, Schett G (2011) The pathogenesis of rheumatoid arthritis. N Engl J Med 365:2205–2219

    Article  CAS  PubMed  Google Scholar 

  • Misasi R, Sorice M, Griggi T, d’Agostino F, Garofalo T, Masala C, Pontieri GM, Lenti L (1993) GM3 as a target of anti-lymphocytic ganglioside antibodies in AIDS patients. Clin Immunol Immunopathol 67:216–223

    Article  CAS  PubMed  Google Scholar 

  • Monks CR, Freiberg BA, Kupfer H, Sciaky N, Kupfer A (1998) Three-dimensional segregation of supramolecular activation clusters in T cells. Nature 395:82–86

    Article  CAS  PubMed  Google Scholar 

  • Nagafuku M, Okuyama K, Onimaru Y, Suzuki A, Odagiri Y, Yamashita T, Iwasaki K, Fujiwara M, Takayanagi M et al (2012) CD4 and CD8 T cells require different membrane gangliosides for activation. Proc Natl Acad Sci U S A 109:E336–E342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamura K, Suzuki M, Inagaki F, Yamakawa T, Suzuki A (1987) A new ganglioside showing choleragenoid-binding activity in mouse spleen. J Biochem 101:825–835

    Article  CAS  PubMed  Google Scholar 

  • Nakamura K, Suzuki H, Hirabayashi Y, Suzuki A (1995) IV3 alpha (NeuGc alpha 2-8NeuGc)-Gg4Cer is restricted to CD4+ T cells producing interleukin-2 and a small population of mature thymocytes in mice. J Biol Chem 270:3876–3881

    Article  CAS  PubMed  Google Scholar 

  • O’Keefe JP, Blaine K, Alegre ML, Gajewski TF (2004) Formation of a central supramolecular activation cluster is not required for activation of naive CD8+ T cells. Proc Natl Acad Sci U S A 101:9351–9356

    Article  PubMed  PubMed Central  Google Scholar 

  • Orihara K, Dil N, Anaparti V, Moqbel R (2010) What’s new in asthma pathophysiology and immunopathology? Expert Rev Respir Med 4:605–629

    Article  CAS  PubMed  Google Scholar 

  • Pizzo P, Giurisato E, Tassi M, Benedetti A, Pozzan T, Viola A (2002) Lipid rafts and T cell receptor signaling: a critical re-evaluation. Eur J Immunol 32:3082–3091

    Article  CAS  PubMed  Google Scholar 

  • Plumlee CR, Sheridan BS, Cicek BB, Lefrancois L (2013) Environmental cues dictate the fate of individual CD8+ T cells responding to infection. Immunity 39:347–356

    Article  CAS  PubMed  Google Scholar 

  • Potapenko M, Shurin GV, de Leon J (2007) Gangliosides as immunomodulators. Adv Exp Med Biol 601:195–203

    Article  PubMed  Google Scholar 

  • Rahman A, Isenberg DA (2008) Systemic lupus erythematosus. N Engl J Med 358:929–939

    Article  CAS  PubMed  Google Scholar 

  • Regina Todeschini A, Hakomori SI (2008) Functional role of glycosphingolipids and gangliosides in control of cell adhesion, motility, and growth, through glycosynaptic microdomains. Biochim Biophys Acta 1780:421–433

    Article  CAS  PubMed  Google Scholar 

  • Rosen H, Alfonso C, Surh CD, McHeyzer Williams MG (2003) Rapid induction of medullary thymocyte phenotypic maturation and egress inhibition by nanomolar sphingosine 1-phosphate receptor agonist. Proc Natl Acad Sci U S A 100:10907–10912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rothenberg EV, Taghon T (2005) Molecular genetics of T cell development. Annu Rev Immunol 23:601–649

    Article  CAS  PubMed  Google Scholar 

  • Rudolph MG, Stanfield RL, Wilson IA (2006) How TCRs bind MHCs, peptides, and coreceptors. Annu Rev Immunol 24:419–466

    Article  CAS  PubMed  Google Scholar 

  • Saito T, Yokosuka T (2006) Immunological synapse and microclusters: the site for recognition and activation of T cells. Curr Opin Immunol 18:305–313

    Article  CAS  PubMed  Google Scholar 

  • Salmond RJ, Pitman RS, Jimi E, Soriani M, Hirst TR, Ghosh S, Rincon M, Williams NA (2002) CD8+ T cell apoptosis induced by Escherichia coli heat-labile enterotoxin B subunit occurs via a novel pathway involving NF-kappaB-dependent caspase activation. Eur J Immunol 32:1737–1747

    Article  CAS  PubMed  Google Scholar 

  • Shalaby KH, Martin JG (2010) Overview of asthma; the place of the T cell. Curr Opin Pharmacol 10:218–225

    Article  CAS  PubMed  Google Scholar 

  • Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387:569–572

    Article  CAS  PubMed  Google Scholar 

  • Simons K, Toomre D (2000) Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1:31–39

    Article  CAS  PubMed  Google Scholar 

  • Sloan Lancaster J, Steinberg TH, Allen PM (1997) Selective loss of the calcium ion signaling pathway in T cells maturing toward a T helper 2 phenotype. J Immunol 159:1160–1168

    CAS  PubMed  Google Scholar 

  • Smith JA, Tang Q, Bluestone JA (1998) Partial TCR signals delivered by FcR-nonbinding anti-CD3 monoclonal antibodies differentially regulate individual Th subsets. J Immunol 160:4841–4849

    CAS  PubMed  Google Scholar 

  • Smith-Garvin JE, Koretzky GA, Jordan MS (2009) T cell activation. Annu Rev Immunol 27:591–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sonnino S, Mauri L, Chigorno V, Prinetti A (2007) Gangliosides as components of lipid membrane domains. Glycobiology 17:1R–13R

    Article  CAS  PubMed  Google Scholar 

  • Sorice M, Parolini I, Sansolini T, Garofalo T, Dolo V, Sargiacomo M, Tai T, Peschle C, Torrisi MR et al (1997) Evidence for the existence of ganglioside-enriched plasma membrane domains in human peripheral lymphocytes. J Lipid Res 38:969–980

    CAS  PubMed  Google Scholar 

  • Suzuki Y, Hirabayashi Y, Matsumoto N, Kato H, Hidari K, Tsuchiya K, Matsumoto M, Hoshino H, Tozawa H et al (1987) Aberrant expression of ganglioside and asialoglycosphingolipid antigens in adult T-cell leukemia cells. Jpn J Cancer Res 78:1112–1120

    CAS  PubMed  Google Scholar 

  • Takamiya K, Yamamoto A, Furukawa K, Yamashiro S, Shin M, Okada M, Fukumoto S, Haraguchi M, Takeda N et al (1996) Mice with disrupted GM2/GD2 synthase gene lack complex gangliosides but exhibit only subtle defects in their nervous system. Proc Natl Acad Sci U S A 93:10662–10667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tani-ichi S, Maruyama K, Kondo N, Nagafuku M, Kabayama K, Inokuchi J, Shimada Y, Ohno-Iwashita Y, Yagita H et al (2005) Structure and function of lipid rafts in human activated T cells. Int Immunol 17:749–758

    Article  CAS  PubMed  Google Scholar 

  • Thauland TJ, Parker DC (2010) Diversity in immunological synapse structure. Immunology 131:466–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tidhar R, Futerman AH (2013) The complexity of sphingolipid biosynthesis in the endoplasmic reticulum. Biochim Biophys Acta 1833:2511–2518

    Article  CAS  PubMed  Google Scholar 

  • Trambley J, Bingaman AW, Lin A, Elwood ET, Waitze SY, Ha J, Durham MM, Corbascio M, Cowan SR et al (1999) Asialo GM1(+) CD8(+) T cells play a critical role in costimulation blockade-resistant allograft rejection. J Clin Invest 104:1715–1722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsokos GC (2011) Systemic lupus erythematosus. N Engl J Med 365:2110–2121

    Article  CAS  PubMed  Google Scholar 

  • Tsukuda Y, Iwasaki N, Seito N, Kanayama M, Fujitani N, Shinohara Y, Kasahara Y, Onodera T, Suzuki K et al (2012) Ganglioside GM3 has an essential role in the pathogenesis and progression of rheumatoid arthritis. PLoS One 7:e40136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tubo NJ, Pagan AJ, Taylor JJ, Nelson RW, Linehan JL, Ertelt JM, Huseby ES, Way SS, Jenkins MK (2013) Single naive CD4+ T cells from a diverse repertoire produce different effector cell types during infection. Cell 153:785–796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tuosto L, Parolini I, Schroder S, Sargiacomo M, Lanzavecchia A, Viola A (2001) Organization of plasma membrane functional rafts upon T cell activation. Eur J Immunol 31:345–349

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Lu ZH, Gabius HJ, Rohowsky Kochan C, Ledeen RW, Wu G (2009) Cross-linking of GM1 ganglioside by galectin-1 mediates regulatory T cell activity involving TRPC5 channel activation: possible role in suppressing experimental autoimmune encephalomyelitis. J Immunol 182:4036–4045

    Article  CAS  PubMed  Google Scholar 

  • Yokosuka T, Saito T (2010) The immunological synapse, TCR microclusters, and T cell activation. Curr Top Microbiol Immunol 340:81–107

    CAS  PubMed  Google Scholar 

  • Yoshikawa M, Go S, Takasaki K, Kakazu Y, Ohashi M, Nagafuku M, Kabayama K, Sekimoto J, Suzuki S et al (2009) Mice lacking ganglioside GM3 synthase exhibit complete hearing loss due to selective degeneration of the organ of Corti. Proc Natl Acad Sci U S A 106:9483–9488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu J, Yamane H, Paul WE (2010) Differentiation of effector CD4 T cell populations . Annu Rev Immunol 28:445–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Y, Gumlaw N, Karman J, Zhao H, Zhang J, Jiang JL, Maniatis P, Edling A, Chuang WL et al (2011) Lowering glycosphingolipid levels in CD4+ T cells attenuates T cell receptor signaling, cytokine production, and differentiation to the Th17 lineage. J Biol Chem 286:14787–14794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Dr. V. Lucas for critical reading of this manuscript. This work was supported by research grants from the Core Research for Evolutional Science and Technology division of the Japan Science and Technology Agency (to J.-i.I. and M.N.), a Grant-in-Aid for Scientific Research (B) (to J.-i.I.), a Grant-in-Aid for Young Scientists (B) (to M.N.), the Mizutani Research Foundation for Glycoscience (J.-i.I.), the Naito Science Foundation (J.-i.I. and M.N.), and the ONO Medical Research Foundation (J.-i.I.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Masakazu Nagafuku or Jin-ichi Inokuchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Nagafuku, M., Inokuchi, Ji. (2015). Gangliosides and T-Cell Immunity. In: Suzuki, T., Ohtsubo, K., Taniguchi, N. (eds) Sugar Chains. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55381-6_3

Download citation

Publish with us

Policies and ethics