Skip to main content

Glycan-Mediated Protein Transport from the Endoplasmic Reticulum

  • Chapter
  • First Online:
Sugar Chains

Abstract

Protein sorting in the secretory pathway is an essential step to route proteins to their proper locations. A number of secretory proteins contain intrinsic sorting signals that are recognized by transport machineries. Efficient sorting of several secretory proteins requires cargo receptors that recognize the sorting signals of specific proteins and sort them into transport vesicles. In the early secretory pathway from the endoplasmic reticulum (ER), the cargo receptors function as linkers between the secretory proteins and coat protein complex II (COPII). Most secretory proteins are posttranslationally modified by the addition of sugar chains in the ER. Several lines of evidence indicate that these glycan structures act as signals for transport of the modified proteins and determine their final destinations. In the secretory pathway, there are several lectin-type cargo receptors that recognize specific glycan structures on proteins. The interactions between glycoproteins and cargo receptors are dependent upon the environment, such as the pH in organelles, as well as the glycan structures. Impairment of cargo receptors causes several diseases through inefficient delivery of their target molecules. In this review, we describe the current understanding of the sorting and transport mechanisms of glycoproteins from the ER in mammalian cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aebi M (2013) N-linked protein glycosylation in the ER. Biochim Biophys Acta 1833:2430–2437

    Article  CAS  PubMed  Google Scholar 

  • Apodaca G, Gallo LI, Bryant DM (2012) Role of membrane traffic in the generation of epithelial cell asymmetry. Nat Cell Biol 14:1235–1243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Appenzeller C, Andersson H, Kappeler F, Hauri HP (1999) The lectin ERGIC-53 is a cargo transport receptor for glycoproteins. Nat Cell Biol 1:330–334

    Article  CAS  PubMed  Google Scholar 

  • Appenzeller-Herzog C, Roche AC, Nufer O, Hauri HP (2004) pH-induced conversion of the transport lectin ERGIC-53 triggers glycoprotein release. J Biol Chem 279:12943–12950

    Article  CAS  PubMed  Google Scholar 

  • Appenzeller-Herzog C, Nyfeler B, Burkhard P, Santamaria I, Lopez-Otin C, Hauri HP (2005) Carbohydrate- and conformation-dependent cargo capture for ER-exit. Mol Biol Cell 16:1258–1267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Araki K, Nagata K (2011) Protein folding and quality control in the ER. Cold Spring Harb Perspect Biol 3:a007526

    Article  PubMed  PubMed Central  Google Scholar 

  • Barlowe C (2003) Signals for COPII-dependent export from the ER: what’s the ticket out? Trends Cell Biol 13:295–300

    Article  CAS  PubMed  Google Scholar 

  • Belden WJ, Barlowe C (1996) Erv25p, a component of COPII-coated vesicles, forms a complex with Emp24p that is required for efficient endoplasmic reticulum to Golgi transport. J Biol Chem 271:26939–26946

    Article  CAS  PubMed  Google Scholar 

  • Blum R, Lepier A (2008) The luminal domain of p23 (Tmp21) plays a critical role in p23 cell surface trafficking. Traffic 9:1530–1550

    Article  CAS  PubMed  Google Scholar 

  • Blum R, Pfeiffer F, Feick P, Nastainczyk W, Kohler B, Schafer KH, Schulz I (1999) Intracellular localization and in vivo trafficking of p24A and p23. J Cell Sci 112(Pt 4):537–548

    CAS  PubMed  Google Scholar 

  • Bonifacino JS, Glick BS (2004) The mechanisms of vesicle budding and fusion. Cell 116:153–166

    Article  CAS  PubMed  Google Scholar 

  • Bonnon C, Wendeler MW, Paccaud JP, Hauri HP (2010) Selective export of human GPI-anchored proteins from the endoplasmic reticulum. J Cell Sci 123:1705–1715

    Article  CAS  PubMed  Google Scholar 

  • Braulke T, Bonifacino JS (2009) Sorting of lysosomal proteins. Biochim Biophys Acta 1793:605–614

    Article  CAS  PubMed  Google Scholar 

  • Bremser M, Nickel W, Schweikert M, Ravazzola M, Amherdt M, Hughes CA, Sollner TH, Rothman JE, Wieland FT (1999) Coupling of coat assembly and vesicle budding to packaging of putative cargo receptors. Cell 96:495–506

    Article  CAS  PubMed  Google Scholar 

  • Buechling T, Chaudhary V, Spirohn K, Weiss M, Boutros M (2011) p24 proteins are required for secretion of Wnt ligands. EMBO Rep 12:1265–1272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castillon GA, Aguilera-Romero A, Manzano-Lopez J, Epstein S, Kajiwara K, Funato K, Watanabe R, Riezman H, Muniz M (2011) The yeast p24 complex regulates GPI-anchored protein transport and quality control by monitoring anchor remodeling. Mol Biol Cell 22:2924–2936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clerc S, Hirsch C, Oggier DM, Deprez P, Jakob C, Sommer T, Aebi M (2009) Htm1 protein generates the N-glycan signal for glycoprotein degradation in the endoplasmic reticulum. J Cell Biol 184:159–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Contreras FX, Ernst AM, Haberkant P, Bjorkholm P, Lindahl E, Gonen B, Tischer C, Elofsson A, von Heijne G, Thiele C et al (2012) Molecular recognition of a single sphingolipid species by a protein’s transmembrane domain. Nature 481:525–529

    Article  CAS  PubMed  Google Scholar 

  • Copic A, Dorrington M, Pagant S, Barry J, Lee MC, Singh I, Hartman JLT, Miller EA (2009) Genomewide analysis reveals novel pathways affecting endoplasmic reticulum homeostasis, protein modification and quality control. Genetics 182:757–769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’Alessio C, Caramelo JJ, Parodi AJ (2010) UDP-GlC:glycoprotein glucosyltransferase-glucosidase II, the ying-yang of the ER quality control. Semin Cell Dev Biol 21:491–499

    Article  PubMed  PubMed Central  Google Scholar 

  • D’Arcangelo JG, Stahmer KR, Miller EA (2013) Vesicle-mediated export from the ER: COPII coat function and regulation. Biochim Biophys Acta 1833:2464–2472

    Article  PubMed  PubMed Central  Google Scholar 

  • Dancourt J, Barlowe C (2010) Protein sorting receptors in the early secretory pathway. Annu Rev Biochem 79:777–802

    Article  CAS  PubMed  Google Scholar 

  • Delacour D, Cramm-Behrens CI, Drobecq H, Le Bivic A, Naim HY, Jacob R (2006) Requirement for galectin-3 in apical protein sorting. Curr Biol 16:408–414

    Article  CAS  PubMed  Google Scholar 

  • Delacour D, Koch A, Jacob R (2009) The role of galectins in protein trafficking. Traffic 10:1405–1413

    Article  CAS  PubMed  Google Scholar 

  • Fujita M, Kinoshita T (2010) Structural remodeling of GPI anchors during biosynthesis and after attachment to proteins. FEBS Lett 584:1670–1677

    Article  CAS  PubMed  Google Scholar 

  • Fujita M, Kinoshita T (2012) GPI-anchor remodeling: potential functions of GPI-anchors in intracellular trafficking and membrane dynamics. Biochim Biophys Acta 1821:1050–1058

    Article  CAS  PubMed  Google Scholar 

  • Fujita M, Maeda Y, Ra M, Yamaguchi Y, Taguchi R, Kinoshita T (2009) GPI glycan remodeling by PGAP5 regulates transport of GPI-anchored proteins from the ER to the Golgi. Cell 139:352–365

    Article  CAS  PubMed  Google Scholar 

  • Fujita M, Watanabe R, Jaensch N, Romanova-Michaelides M, Satoh T, Kato M, Riezman H, Yamaguchi Y, Maeda Y, Kinoshita T (2011) Sorting of GPI-anchored proteins into ER exit sites by p24 proteins is dependent on remodeled GPI. J Cell Biol 194:61–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fullekrug J, Suganuma T, Tang BL, Hong W, Storrie B, Nilsson T (1999) Localization and recycling of gp27 (hp24gamma3): complex formation with other p24 family members. Mol Biol Cell 10:1939–1955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hauri HP, Kappeler F, Andersson H, Appenzeller C (2000) ERGIC-53 and traffic in the secretory pathway. J Cell Sci 113(Pt 4):587–596

    CAS  PubMed  Google Scholar 

  • Helenius A, Aebi M (2004) Roles of N-linked glycans in the endoplasmic reticulum. Annu Rev Biochem 73:1019–1049

    Article  CAS  PubMed  Google Scholar 

  • Herzig Y, Sharpe HJ, Elbaz Y, Munro S, Schuldiner M (2012) A systematic approach to pair secretory cargo receptors with their cargo suggests a mechanism for cargo selection by Erv14. PLoS Biol 10:e1001329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirabayashi J, Hashidate T, Arata Y, Nishi N, Nakamura T, Hirashima M, Urashima T, Oka T, Futai M, Muller WE et al (2002) Oligosaccharide specificity of galectins: a search by frontal affinity chromatography. Biochim Biophys Acta 1572:232–254

    Article  CAS  PubMed  Google Scholar 

  • Hirata R, Nihei C, Nakano A (2013) Isoform-selective oligomer formation of Saccharomyces cerevisiae p24 family proteins. J Biol Chem 288:37057–37070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hosokawa N, Tremblay LO, Sleno B, Kamiya Y, Wada I, Nagata K, Kato K, Herscovics A (2010) EDEM1 accelerates the trimming of alpha1,2-linked mannose on the C branch of N-glycans. Glycobiology 20:567–575

    Article  CAS  PubMed  Google Scholar 

  • Ikezawa H (2002) Glycosylphosphatidylinositol (GPI)-anchored proteins. Biol Pharm Bull 25:409–417

    Article  CAS  PubMed  Google Scholar 

  • Jenne N, Frey K, Brugger B, Wieland FT (2002) Oligomeric state and stoichiometry of p24 proteins in the early secretory pathway. J Biol Chem 277:46504–46511

    Article  CAS  PubMed  Google Scholar 

  • Jensen D, Schekman R (2011) COPII-mediated vesicle formation at a glance. J Cell Sci 124:1–4

    Article  CAS  PubMed  Google Scholar 

  • Kamiya Y, Kamiya D, Yamamoto K, Nyfeler B, Hauri HP, Kato K (2008) Molecular basis of sugar recognition by the human L-type lectins ERGIC-53, VIPL, and VIP36. J Biol Chem 283:1857–1861

    Article  CAS  PubMed  Google Scholar 

  • Kawasaki N, Ichikawa Y, Matsuo I, Totani K, Matsumoto N, Ito Y, Yamamoto K (2008) The sugar-binding ability of ERGIC-53 is enhanced by its interaction with MCFD2. Blood 111:1972–1979

    Article  CAS  PubMed  Google Scholar 

  • Kim JJ, Olson LJ, Dahms NM (2009) Carbohydrate recognition by the mannose-6-phosphate receptors. Curr Opin Struct Biol 19:534–542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kinoshita T (2014) Biosynthesis and deficiencies of glycosylphosphatidylinositol. Proc Jpn Acad Ser B Phys Biol Sci 90:130–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kinoshita T, Fujita M, Maeda Y (2008) Biosynthesis, remodelling and functions of mammalian GPI-anchored proteins: recent progress. J Biochem 144:287–294

    Article  CAS  PubMed  Google Scholar 

  • Kollmann K, Pohl S, Marschner K, Encarnacao M, Sakwa I, Tiede S, Poorthuis BJ, Lubke T, Muller-Loennies S, Storch S et al (2010) Mannose phosphorylation in health and disease. Eur J Cell Biol 89:117–123

    Article  CAS  PubMed  Google Scholar 

  • Lahtinen U, Svensson K, Pettersson RF (1999) Mapping of structural determinants for the oligomerization of p58, a lectin-like protein of the intermediate compartment and cis-Golgi. Eur J Biochem 260:392–397

    Article  CAS  PubMed  Google Scholar 

  • Lederkremer GZ (2009) Glycoprotein folding, quality control and ER-associated degradation. Curr Opin Struct Biol 19:515–523

    Article  CAS  PubMed  Google Scholar 

  • Lee MC, Miller EA, Goldberg J, Orci L, Schekman R (2004) Bi-directional protein transport between the ER and Golgi. Annu Rev Cell Dev Biol 20:87–123

    Article  CAS  PubMed  Google Scholar 

  • Mancias JD, Goldberg J (2008) Structural basis of cargo membrane protein discrimination by the human COPII coat machinery. EMBO J 27:2918–2928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marzioch M, Henthorn DC, Herrmann JM, Wilson R, Thomas DY, Bergeron JJ, Solari RC, Rowley A (1999) Erp1p and Erp2p, partners for Emp24p and Erv25p in a yeast p24 complex. Mol Biol Cell 10:1923–1938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller E, Antonny B, Hamamoto S, Schekman R (2002) Cargo selection into COPII vesicles is driven by the Sec24p subunit. EMBO J 21:6105–6113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller EA, Beilharz TH, Malkus PN, Lee MC, Hamamoto S, Orci L, Schekman R (2003) Multiple cargo binding sites on the COPII subunit Sec24p ensure capture of diverse membrane proteins into transport vesicles. Cell 114:497–509

    Article  CAS  PubMed  Google Scholar 

  • Mishra R, Grzybek M, Niki T, Hirashima M, Simons K (2010) Galectin-9 trafficking regulates apical-basal polarity in Madin-Darby canine kidney epithelial cells. Proc Natl Acad Sci U S A 107:17633–17638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukhopadhyay D, Riezman H (2007) Proteasome-independent functions of ubiquitin in endocytosis and signaling. Science 315:201–205

    Article  CAS  PubMed  Google Scholar 

  • Muniz M, Nuoffer C, Hauri HP, Riezman H (2000) The Emp24 complex recruits a specific cargo molecule into endoplasmic reticulum-derived vesicles. J Cell Biol 148:925–930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nichols WC, Seligsohn U, Zivelin A, Terry VH, Hertel CE, Wheatley MA, Moussalli MJ, Hauri HP, Ciavarella N, Kaufman RJ et al (1998) Mutations in the ER-Golgi intermediate compartment protein ERGIC-53 cause combined deficiency of coagulation factors V and VIII. Cell 93:61–70

    Article  CAS  PubMed  Google Scholar 

  • Nishio M, Kamiya Y, Mizushima T, Wakatsuki S, Sasakawa H, Yamamoto K, Uchiyama S, Noda M, McKay AR, Fukui K et al (2010) Structural basis for the cooperative interplay between the two causative gene products of combined factor V and factor VIII deficiency. Proc Natl Acad Sci U S A 107:4034–4039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nufer O, Mitrovic S, Hauri HP (2003) Profile-based data base scanning for animal L-type lectins and characterization of VIPL, a novel VIP36-like endoplasmic reticulum protein. J Biol Chem 278:15886–15896

    Article  CAS  PubMed  Google Scholar 

  • Nyfeler B, Zhang B, Ginsburg D, Kaufman RJ, Hauri HP (2006) Cargo selectivity of the ERGIC-53/MCFD2 transport receptor complex. Traffic 7:1473–1481

    Article  CAS  PubMed  Google Scholar 

  • Nyfeler B, Reiterer V, Wendeler MW, Stefan E, Zhang B, Michnick SW, Hauri HP (2008) Identification of ERGIC-53 as an intracellular transport receptor of alpha1-antitrypsin. J Cell Biol 180:705–712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olzmann JA, Kopito RR, Christianson JC (2013) The mammalian endoplasmic reticulum-associated degradation system. Cold Spring Harb Perspect Biol 5:a013185

    Google Scholar 

  • Orlean P, Menon AK (2007) Thematic review series: lipid posttranslational modifications. GPI anchoring of protein in yeast and mammalian cells, or: how we learned to stop worrying and love glycophospholipids. J Lipid Res 48:993–1011

    Article  CAS  PubMed  Google Scholar 

  • Port F, Hausmann G, Basler K (2011) A genome-wide RNA interference screen uncovers two p24 proteins as regulators of Wingless secretion. EMBO Rep 12:1144–1152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Potter BA, Hughey RP, Weisz OA (2006) Role of N- and O-glycans in polarized biosynthetic sorting. Am J Physiol Cell Physiol 290:C1–C10

    Article  CAS  PubMed  Google Scholar 

  • Qin SY, Kawasaki N, Hu D, Tozawa H, Matsumoto N, Yamamoto K (2012) Subcellular localization of ERGIC-53 under endoplasmic reticulum stress condition. Glycobiology 22:1709–1720

    Article  CAS  PubMed  Google Scholar 

  • Reiterer V, Nyfeler B, Hauri HP (2010) Role of the lectin VIP36 in post-ER quality control of human alpha1-antitrypsin. Traffic 11:1044–1055

    Article  CAS  PubMed  Google Scholar 

  • Rojo M, Emery G, Marjomaki V, McDowall AW, Parton RG, Gruenberg J (2000) The transmembrane protein p23 contributes to the organization of the Golgi apparatus. J Cell Sci 113(Pt 6):1043–1057

    CAS  PubMed  Google Scholar 

  • Roth J, Zuber C, Park S, Jang I, Lee Y, Kysela KG, Le Fourn V, Santimaria R, Guhl B, Cho JW (2010) Protein N-glycosylation, protein folding, and protein quality control. Mol Cells 30:497–506

    Article  CAS  PubMed  Google Scholar 

  • Ruddock LW, Molinari M (2006) N-glycan processing in ER quality control. J Cell Sci 119:4373–4380

    Article  CAS  PubMed  Google Scholar 

  • Sato K, Nakano A (2002) Emp47p and its close homolog Emp46p have a tyrosine-containing endoplasmic reticulum exit signal and function in glycoprotein secretion in Saccharomyces cerevisiae. Mol Biol Cell 13:2518–2532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Satoh T, Sato K, Kanoh A, Yamashita K, Yamada Y, Igarashi N, Kato R, Nakano A, Wakatsuki S (2006) Structures of the carbohydrate recognition domain of Ca2+-independent cargo receptors Emp46p and Emp47p. J Biol Chem 281:10410–10419

    Article  CAS  PubMed  Google Scholar 

  • Schimmoller F, Singer-Kruger B, Schroder S, Kruger U, Barlowe C, Riezman H (1995) The absence of Emp24p, a component of ER-derived COPII-coated vesicles, causes a defect in transport of selected proteins to the Golgi. EMBO J 14:1329–1339

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schweizer A, Fransen JA, Bachi T, Ginsel L, Hauri HP (1988) Identification, by a monoclonal antibody, of a 53-kD protein associated with a tubulo-vesicular compartment at the cis-side of the Golgi apparatus. J Cell Biol 107:1643–1653

    Article  CAS  PubMed  Google Scholar 

  • Sousa MC, Ferrero-Garcia MA, Parodi AJ (1992) Recognition of the oligosaccharide and protein moieties of glycoproteins by the UDP-Glc:glycoprotein glucosyltransferase. Biochemistry 31:97–105

    Article  CAS  PubMed  Google Scholar 

  • Strating JR, Martens GJ (2009) The p24 family and selective transport processes at the ER-Golgi interface. Biol Cell 101:495–509

    Article  CAS  PubMed  Google Scholar 

  • Strating JR, van Bakel NH, Leunissen JA, Martens GJ (2009) A comprehensive overview of the vertebrate p24 family: identification of a novel tissue-specifically expressed member. Mol Biol Evol 26:1707–1714

    Article  CAS  PubMed  Google Scholar 

  • Takida S, Maeda Y, Kinoshita T (2008) Mammalian GPI-anchored proteins require p24 proteins for their efficient transport from the ER to the plasma membrane. Biochem J 409:555–562

    Article  CAS  PubMed  Google Scholar 

  • Tanaka S, Maeda Y, Tashima Y, Kinoshita T (2004) Inositol deacylation of glycosylphosphatidylinositol-anchored proteins is mediated by mammalian PGAP1 and yeast Bst1p. J Biol Chem 279:14256–14263

    Article  CAS  PubMed  Google Scholar 

  • Theiler R, Fujita M, Nagae M, Yamaguchi Y, Maeda Y, Kinoshita T (2014) The alpha helical region in p24γ2 subunit of p24 cargo receptor is pivotal for the recognition and transport of glycosylphosphatidylinositol-anchored proteins. J Biol Chem 289(24):16835–16843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Velloso LM, Svensson K, Schneider G, Pettersson RF, Lindqvist Y (2002) Crystal structure of the carbohydrate recognition domain of p58/ERGIC-53, a protein involved in glycoprotein export from the endoplasmic reticulum. J Biol Chem 277:15979–15984

    Article  CAS  PubMed  Google Scholar 

  • Yerushalmi N, Keppler-Hafkemeyer A, Vasmatzis G, Liu XF, Olsson P, Bera TK, Duray P, Lee B, Pastan I (2001) ERGL, a novel gene related to ERGIC-53 that is highly expressed in normal and neoplastic prostate and several other tissues. Gene 265:55–60

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Cunningham MA, Nichols WC, Bernat JA, Seligsohn U, Pipe SW, McVey JH, Schulte-Overberg U, de Bosch NB, Ruiz-Saez A et al (2003) Bleeding due to disruption of a cargo-specific ER-to-Golgi transport complex. Nat Genet 34:220–225

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morihisa Fujita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Fujita, M., Gao, XD., Kinoshita, T. (2015). Glycan-Mediated Protein Transport from the Endoplasmic Reticulum. In: Suzuki, T., Ohtsubo, K., Taniguchi, N. (eds) Sugar Chains. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55381-6_2

Download citation

Publish with us

Policies and ethics