Skip to main content

N-Glycans and Quality Control of Proteins

  • Chapter
  • First Online:
Book cover Sugar Chains

Abstract

Glycosylation is one of the most ubiquitous posttranslational modifications for eukaryotic proteins. There are numerous examples of the attachment of glycans to carrier proteins resulting in changes in their physicochemical properties, such as solubility or heat stability, as well as physiological properties, such as bioactivity or intra- or intercellular trafficking. In addition, recent studies have revealed that N-glycans can act as a readout for the folding status of glycoproteins in the endoplasmic reticulum (ER), so that only proper amounts of functional proteins are made and delivered to their respective destinations. This process is often called the glycoprotein quality control system, as a part of the ER protein homeostasis machinery. After misfolded glycoproteins are targeted for destruction in the ER, they are eventually retrotranslocated into the cytosol for proteasomal degradation. In the cytosol, glycans are again used for recognition by ubiquitin ligases but are eventually removed from glycoproteins in order to efficiently degrade misfolded glycoproteins. In the present review, a particular focus will be on the mannose-trimming processes, whereby N-glycan-dependent ER-associated degradation signals are created and recognized in the ER, as well as on the function of Fbs proteins and PNGase that recognize N-glycans in the cytosol.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aebi M, Bernasconi R, Clerc S, Molinari M (2010) N-glycan structures: recognition and processing in the ER. Trends Biochem Sci 35:74–82

    Article  CAS  PubMed  Google Scholar 

  • Aikawa J, Matsuo I, Ito Y (2012) In vitro mannose trimming property of human ER alpha-1,2 mannosidase I. Glycoconj J 29:35–45

    Article  CAS  PubMed  Google Scholar 

  • Allen MD, Buchberger A, Bycroft M (2006) The PUB domain functions as a p97 binding module in human peptide N-glycanase. J Biol Chem 281:25502–25508

    Article  CAS  PubMed  Google Scholar 

  • Avezov E, Frenkel Z, Ehrlich M, Herscovics A, Lederkremer GZ (2008) Endoplasmic reticulum (ER) mannosidase I is compartmentalized and required for N-glycan trimming to Man5 6GlcNAc2 in glycoprotein ER-associated degradation. Mol Biol Cell 19:216–225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benitez EM, Stolz A, Wolf DH (2011) Yos9, a control protein for misfolded glycosylated and non-glycosylated proteins in ERAD. FEBS Lett 585:3015–3019

    Article  PubMed  CAS  Google Scholar 

  • Bernasconi R, Galli C, Calanca V, Nakajima T, Molinari M (2010) Stringent requirement for HRD1, SEL1L, and OS-9/XTP3-B for disposal of ERAD-LS substrates. J Cell Biol 188:223–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernasconi R, Galli C, Noack J, Bianchi S, de Haan CA, Reggiori F, Molinari M (2012) Role of the SEL1L:LC3-I complex as an ERAD tuning receptor in the mammalian ER. Mol Cell 46:809–819

    Google Scholar 

  • Bhamidipati A, Denic V, Quan EM, Weissman JS (2005) Exploration of the topological requirements of ERAD identifies Yos9p as a lectin sensor of misfolded glycoproteins in the ER lumen. Mol Cell 19:741–751

    Article  CAS  PubMed  Google Scholar 

  • Buschhorn BA, Kostova Z, Medicherla B, Wolf DH (2004) A genome-wide screen identifies Yos9p as essential for ER-associated degradation of glycoproteins. FEBS Lett 577:422–426

    Article  CAS  PubMed  Google Scholar 

  • Cali T, Galli C, Olivari S, Molinari M (2008) Segregation and rapid turnover of EDEM1 by an autophagy-like mechanism modulates standard ERAD and folding activities. Biochem Biophys Res Commun 371:405–410

    Article  CAS  PubMed  Google Scholar 

  • Caramelo JJ, Parodi AJ (2008) Getting in and out from calnexin/calreticulin cycles. J Biol Chem 283:10221–10225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castonguay AC, Olson LJ, Dahms NM (2011) Mannose 6-phosphate receptor homology (MRH) domain-containing lectins in the secretory pathway. Biochim Biophys Acta 1810:815–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christianson JC, Shaler TA, Tyler RE, Kopito RR (2008) OS-9 and GRP94 deliver mutant alpha1-antitrypsin to the Hrd1-SEL1L ubiquitin ligase complex for ERAD. Nat Cell Biol 10:272–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christianson JC, Olzmann JA, Shaler TA, Sowa ME, Bennett EJ, Richter CM, Tyler RE, Greenblatt EJ, Harper JW, Kopito RR (2011) Defining human ERAD networks through an integrative mapping strategy. Nat Cell Biol 14:93–105

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Claessen JH, Kundrat L, Ploegh HL (2012) Protein quality control in the ER: balancing the ubiquitin checkbook. Trends Cell Biol 22:22–32

    Article  CAS  PubMed  Google Scholar 

  • Clerc S, Hirsch C, Oggier DM, Deprez P, Jakob C, Sommer T, Aebi M (2009) Htm1 protein generates the N-glycan signal for glycoprotein degradation in the endoplasmic reticulum. J Cell Biol 184:159–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cormier JH, Tamura T, Sunryd JC, Hebert DN (2009) EDEM1 recognition and delivery of misfolded proteins to the SEL1L-containing ERAD complex. Mol Cell 34:627–633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cruciat CM, Hassler C, Niehrs C (2006) The MRH protein Erlectin is a member of the endoplasmic reticulum synexpression group and functions in N-glycan recognition. J Biol Chem 281:12986–12993

    Article  CAS  PubMed  Google Scholar 

  • D’Alessio C, Caramelo JJ, Parodi AJ (2010) UDP-GlC:glycoprotein glucosyltransferase-glucosidase II, the ying-yang of the ER quality control. Semin Cell Dev Biol 21:491–499

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Denoyelle F, Weil D, Maw MA, Wilcox SA, Lench NJ, Allen-Powell DR, Osborn AH, Dahl HH, Middleton A, Houseman MJ et al (1997) Prelingual deafness: high prevalence of a 30delG mutation in the connexin 26 gene. Hum Mol Genet 6:2173–2177

    Article  CAS  PubMed  Google Scholar 

  • Diepold A, Li G, Lennarz WJ, Nurnberger T, Brunner F (2007) The Arabidopsis AtPNG1 gene encodes a peptide: N-glycanase. Plant J 52:94–104

    Article  CAS  PubMed  Google Scholar 

  • Doerks T, Copley RR, Schultz J, Ponting CP, Bork P (2002) Systematic identification of novel protein domain families associated with nuclear functions. Genome Res 12:47–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ellgaard L, Helenius A (2003) Quality control in the endoplasmic reticulum. Nat Rev Mol Cell Biol 4:181–191

    Article  CAS  PubMed  Google Scholar 

  • Enns GM, Shashi V, Bainbridge M, Gambello MJ, Zahir FR, Bast T, Crimian R, Schoch K, Platt J, Cox R et al (2014) Mutations in NGLY1 cause an inherited disorder of the endoplasmic reticulum-associated degradation pathway. Genet Med 16:751–758

    Google Scholar 

  • Fujimori T, Kamiya Y, Nagata K, Kato K, Hosokawa N (2013) Endoplasmic reticulum lectin XTP3-B inhibits endoplasmic reticulum-associated degradation of a misfolded alpha1-antitrypsin variant. FEBS J 280:1563–1575

    Article  CAS  PubMed  Google Scholar 

  • Funakoshi Y, Negishi Y, Gergen JP, Seino J, Ishii K, Lennarz WJ, Matsuo I, Ito Y, Taniguchi N, Suzuki T (2010) Evidence for an essential deglycosylation-independent activity of PNGase in Drosophila melanogaster. PLoS One 5:e10545

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gauss R, Kanehara K, Carvalho P, Ng DT, Aebi M (2011) A complex of Pdi1p and the mannosidase Htm1p initiates clearance of unfolded glycoproteins from the endoplasmic reticulum. Mol Cell 42:782–793

    Article  CAS  PubMed  Google Scholar 

  • Glenn KA, Nelson RF, Wen HM, Mallinger AJ, Paulson HL (2008) Diversity in tissue expression, substrate binding, and SCF complex formation for a lectin family of ubiquitin ligases. J Biol Chem 283:12717–12729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gong B, Chen F, Pan Y, Arrieta-Cruz I, Yoshida Y, Haroutunian V, Pasinetti GM (2010) SCFFbx2-E3-ligase-mediated degradation of BACE1 attenuates Alzheimer’s disease amyloidosis and improves synaptic function. Aging Cell 9:1018–1031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez DS, Karaveg K, Vandersall-Nairn AS, Lal A, Moremen KW (1999) Identification, expression, and characterization of a cDNA encoding human endoplasmic reticulum mannosidase I, the enzyme that catalyzes the first mannose trimming step in mammalian Asn-linked oligosaccharide biosynthesis. J Biol Chem 274:21375–21386

    Article  CAS  PubMed  Google Scholar 

  • Gosain A, Lohia R, Shrivastava A, Saran S (2012) Identification and characterization of peptide: N-glycanase from Dictyostelium discoideum. BMC Biochem 13:9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Habibi-Babadi N, Su A, de Carvalho CE, Colavita A (2010) The N-glycanase png-1 acts to limit axon branching during organ formation in Caenorhabditis elegans. J Neurosci 30:1766–1776

    Article  CAS  PubMed  Google Scholar 

  • Hammond C, Helenius A (1994) Quality control in the secretory pathway: retention of a misfolded viral membrane glycoprotein involves cycling between the ER, intermediate compartment, and Golgi apparatus. J Cell Biol 126:41–52

    Article  CAS  PubMed  Google Scholar 

  • Hampton RY, Sommer T (2012) Finding the will and the way of ERAD substrate retrotranslocation. Curr Opin Cell Biol 24:460–466

    Article  CAS  PubMed  Google Scholar 

  • Hebert DN, Molinari M (2012) Flagging and docking: dual roles for N-glycans in protein quality control and cellular proteostasis. Trends Biochem Sci 37:404–410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Helenius A (1994) How N-linked oligosaccharides affect glycoprotein folding in the endoplasmic reticulum. Mol Biol Cell 5:253–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Helenius A, Aebi M (2001) Intracellular functions of N-linked glycans. Science 291:2364–2369

    Article  CAS  PubMed  Google Scholar 

  • Helenius A, Aebi M (2004) Roles of N-linked glycans in the endoplasmic reticulum. Annu Rev Biochem 73:1019–1049

    Article  CAS  PubMed  Google Scholar 

  • Henzl MT, O’Neal J, Killick R, Thalmann I, Thalmann R (2001) OCP1, an F-box protein, co-localizes with OCP2/SKP1 in the cochlear epithelial gap junction region. Hear Res 157:100–111

    Article  CAS  PubMed  Google Scholar 

  • Henzl MT, Thalmann I, Larson JD, Ignatova EG, Thalmann R (2004) The cochlear F-box protein OCP1 associates with OCP2 and connexin 26. Hear Res 191:101–109

    Article  CAS  PubMed  Google Scholar 

  • Herscovics A (1999a) Importance of glycosidases in mammalian glycoprotein biosynthesis. Biochim Biophys Acta 1473:96–107

    Article  CAS  PubMed  Google Scholar 

  • Herscovics A (1999b) Processing glycosidases of Saccharomyces cerevisiae. Biochim Biophys Acta 1426:275–285

    Article  CAS  PubMed  Google Scholar 

  • Herscovics A, Romero PA, Tremblay LO (2002) The specificity of the yeast and human class I ER alpha 1,2-mannosidases involved in ER quality control is not as strict previously reported. Glycobiology 12:14G–15G

    CAS  PubMed  Google Scholar 

  • Hershko A, Ciechanover A, Varshavsky A (2000) Basic Medical Research Award. The ubiquitin system. Nat Med 6:1073–1081

    Article  CAS  PubMed  Google Scholar 

  • Hirao K, Natsuka Y, Tamura T, Wada I, Morito D, Natsuka S, Romero P, Sleno B, Tremblay LO, Herscovics A et al (2006) EDEM3, a soluble EDEM homolog, enhances glycoprotein endoplasmic reticulum-associated degradation and mannose trimming. J Biol Chem 281:9650–9658

    Article  CAS  PubMed  Google Scholar 

  • Hirsch C, Blom D, Ploegh HL (2003) A role for N-glycanase in the cytosolic turnover of glycoproteins. EMBO J 22:1036–1046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hosokawa N, Wada I, Hasegawa K, Yorihuzi T, Tremblay LO, Herscovics A, Nagata K (2001) A novel ER alpha-mannosidase-like protein accelerates ER-associated degradation. EMBO Rep 2:415–422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hosokawa N, Tremblay LO, You Z, Herscovics A, Wada I, Nagata K (2003) Enhancement of endoplasmic reticulum (ER) degradation of misfolded Null Hong Kong alpha1-antitrypsin by human ER mannosidase I. J Biol Chem 278:26287–26294

    Article  CAS  PubMed  Google Scholar 

  • Hosokawa N, You Z, Tremblay LO, Nagata K, Herscovics A (2007) Stimulation of ERAD of misfolded null Hong Kong alpha1-antitrypsin by Golgi alpha1,2-mannosidases. Biochem Biophys Res Commun 362:626–632

    Article  CAS  PubMed  Google Scholar 

  • Hosokawa N, Wada I, Nagasawa K, Moriyama T, Okawa K, Nagata K (2008) Human XTP3-B forms an endoplasmic reticulum quality control scaffold with the HRD1-SEL1L ubiquitin ligase complex and BiP. J Biol Chem 283:20914–20924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hosokawa N, Kamiya Y, Kamiya D, Kato K, Nagata K (2009) Human OS-9, a lectin required for glycoprotein endoplasmic reticulum-associated degradation, recognizes mannose-trimmed N-glycans. J Biol Chem 284:17061–17068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hosokawa N, Kamiya Y, Kato K (2010a) The role of MRH domain-containing lectins in ERAD. Glycobiology 20:651–660

    Article  CAS  PubMed  Google Scholar 

  • Hosokawa N, Tremblay LO, Sleno B, Kamiya Y, Wada I, Nagata K, Kato K, Herscovics A (2010b) EDEM1 accelerates the trimming of alpha1,2-linked mannose on the C branch of N-glycans. Glycobiology 20:567–575

    Article  CAS  PubMed  Google Scholar 

  • Hosomi A, Tanabe K, Hirayama H, Kim I, Rao H, Suzuki T (2010) Identification of an Htm1 (EDEM)-dependent, Mns1-independent endoplasmic reticulum-associated degradation (ERAD) pathway in Saccharomyces cerevisiae: application of a novel assay for glycoprotein ERAD. J Biol Chem 285:24324–24334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ilyin GP, Serandour AL, Pigeon C, Rialland M, Glaise D, Guguen-Guillouzo C (2002) A new subfamily of structurally related human F-box proteins. Gene 296:11–20

    Article  CAS  PubMed  Google Scholar 

  • Jaenicke LA, Brendebach H, Selbach M, Hirsch C (2011) Yos9p assists in the degradation of certain nonglycosylated proteins from the endoplasmic reticulum. Mol Biol Cell 22:2937–2945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jakob CA, Burda P, Roth J, Aebi M (1998) Degradation of misfolded endoplasmic reticulum glycoproteins in Saccharomyces cerevisiae is determined by a specific oligosaccharide structure. J Cell Biol 142:1223–1233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jakob CA, Bodmer D, Spirig U, Battig P, Marcil A, Dignard D, Bergeron JJ, Thomas DY, Aebi M (2001) Htm1p, a mannosidase-like protein, is involved in glycoprotein degradation in yeast. EMBO Rep 2:423–430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamiya Y, Uekusa Y, Sumiyoshi A, Sasakawa H, Hirao T, Suzuki T, Kato K (2012) NMR characterization of the interaction between the PUB domain of peptide: N-glycanase and ubiquitin-like domain of HR23. FEBS Lett 586:1141–1146

    Article  CAS  PubMed  Google Scholar 

  • Katiyar S, Suzuki T, Balgobin BJ, Lennarz WJ (2002) Site-directed mutagenesis study of yeast peptide: N-glycanase. Insight into the reaction mechanism of deglycosylation. J Biol Chem 277:12953–12959

    Article  CAS  PubMed  Google Scholar 

  • Katiyar S, Li G, Lennarz WJ (2004) A complex between peptide: N-glycanase and two proteasome-linked proteins suggests a mechanism for the degradation of misfolded glycoproteins. Proc Natl Acad Sci U S A 101:13774–13779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katiyar S, Joshi S, Lennarz WJ (2005) The retrotranslocation protein Derlin-1 binds peptide: N-glycanase to the endoplasmic reticulum. Mol Biol Cell 16:4584–4594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kato T, Kawahara A, Ashida H, Yamamoto K (2007) Unique peptide: N-glycanase of Caenorhabditis elegans has activity of protein disulphide reductase as well as of deglycosylation. J Biochem 142:175–181

    Article  CAS  PubMed  Google Scholar 

  • Kelsell DP, Dunlop J, Stevens HP, Lench NJ, Liang JN, Parry G, Mueller RF, Leigh IM (1997) Connexin 26 mutations in hereditary non-syndromic sensorineural deafness. Nature 387:80–83

    Article  CAS  PubMed  Google Scholar 

  • Kern F, Sarg B, Stasyk T, Hess D, Lindner H (2012) The Nogo receptor 2 is a novel substrate of Fbs1. Biochem Biophys Res Commun 417:977–981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim W, Spear ED, Ng DT (2005) Yos9p detects and targets misfolded glycoproteins for ER-associated degradation. Mol Cell 19:753–764

    Article  CAS  PubMed  Google Scholar 

  • Kim I, Ahn J, Liu C, Tanabe K, Apodaca J, Suzuki T, Rao H (2006) The Png1-Rad23 complex regulates glycoprotein turnover. J Cell Biol 172:211–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kimura Y, Nakazawa M, Yamada M (1998) Cloning and characterization of three isoforms of OS-9 cDNA and expression of the OS-9 gene in various human tumor cell lines. J Biochem (Tokyo) 123:876–882

    Article  CAS  Google Scholar 

  • Kornfeld R, Kornfeld S (1985) Assembly of asparagine-linked oligosaccharides. Annu Rev Biochem 54:631–664

    Article  CAS  PubMed  Google Scholar 

  • Lal A, Pang P, Kalelkar S, Romero PA, Herscovics A, Moremen KW (1998) Substrate specificities of recombinant murine Golgi alpha1, 2-mannosidases IA and IB and comparison with endoplasmic reticulum and Golgi processing alpha1,2-mannosidases. Glycobiology 8:981–995

    Article  CAS  PubMed  Google Scholar 

  • Lederkremer GZ (2009) Glycoprotein folding, quality control and ER-associated degradation. Curr Opin Struct Biol 19:515–523

    Article  CAS  PubMed  Google Scholar 

  • Li G, Zhou X, Zhao G, Schindelin H, Lennarz WJ (2005) Multiple modes of interaction of the deglycosylation enzyme, mouse peptide N-glycanase, with the proteasome. Proc Natl Acad Sci U S A 102:15809–15814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li G, Zhao G, Zhou X, Schindelin H, Lennarz WJ (2006) The AAA ATPase p97 links peptide N-glycanase to the endoplasmic reticulum-associated E3 ligase autocrine motility factor receptor. Proc Natl Acad Sci U S A 103:8348–8353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maattanen P, Gehring K, Bergeron JJ, Thomas DY (2010) Protein quality control in the ER: the recognition of misfolded proteins. Semin Cell Dev Biol 21:500–511

    Article  PubMed  CAS  Google Scholar 

  • Madsen L, Seeger M, Semple CA, Hartmann-Petersen R (2009) New ATPase regulators–p97 goes to the PUB. Int J Biochem Cell Biol 41:2380–2388

    Article  CAS  PubMed  Google Scholar 

  • Maerz S, Funakoshi Y, Negishi Y, Suzuki T, Seiler S (2010) The Neurospora peptide: N-glycanase ortholog PNG1 is essential for cell polarity despite its lack of enzymatic activity. J Biol Chem 285:2326–2332

    Article  CAS  PubMed  Google Scholar 

  • Makarova KS, Aravind L, Koonin EV (1999) A superfamily of archaeal, bacterial, and eukaryotic proteins homologous to animal transglutaminases. Protein Sci 8:1714–1719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marin MB, Ghenea S, Spiridon LN, Chiritoiu GN, Petrescu AJ, Petrescu SM (2012) Tyrosinase degradation is prevented when EDEM1 lacks the intrinsically disordered region. PLoS One 7:e42998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez Benitez E, Stolz A, Becher A, Wolf DH (2011) Mnl2, a novel component of the ER associated protein degradation pathway. Biochem Biophys Res Commun 414:528–532

    Article  CAS  PubMed  Google Scholar 

  • Masahara-Negishi Y, Hosomi A, Della Mea M, Serafini-Fracassini D, Suzuki T (2012) A plant peptide: N-glycanase orthologue facilitates glycoprotein ER-associated degradation in yeast. Biochim Biophys Acta 1820:1457–1462

    Article  CAS  PubMed  Google Scholar 

  • Mast SW, Moremen KW (2006) Family 47 alpha-mannosidases in N-glycan processing. Methods Enzymol 415:31–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mast SW, Diekman K, Karaveg K, Davis A, Sifers RN, Moremen KW (2005) Human EDEM2, a novel homolog of family 47 glycosidases, is involved in ER-associated degradation of glycoproteins. Glycobiology 15:421–436

    Article  CAS  PubMed  Google Scholar 

  • McCracken AA, Brodsky JL (2003) Evolving questions and paradigm shifts in endoplasmic-reticulum-associated degradation (ERAD). Bioessays 25:868–877

    Article  CAS  PubMed  Google Scholar 

  • Mikami K, Yamaguchi D, Tateno H, Hu D, Qin SY, Kawasaki N, Yamada M, Matsumoto N, Hirabayashi J, Ito Y et al (2010) The sugar-binding ability of human OS-9 and its involvement in ER-associated degradation. Glycobiology 20:310–321

    Article  CAS  PubMed  Google Scholar 

  • Mizushima T, Hirao T, Yoshida Y, Lee SJ, Chiba T, Iwai K, Yamaguchi Y, Kato K, Tsukihara T, Tanaka K (2004) Structural basis of sugar-recognizing ubiquitin ligase. Nat Struct Mol Biol 11:365–370

    Article  CAS  PubMed  Google Scholar 

  • Mizushima T, Yoshida Y, Kumanomidou T, Hasegawa Y, Suzuki A, Yamane T, Tanaka K (2007) Structural basis for the selection of glycosylated substrates by SCF(Fbs1) ubiquitin ligase. Proc Natl Acad Sci U S A 104:5777–5781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munro S (2001) The MRH domain suggests a shared ancestry for the mannose 6-phosphate receptors and other N-glycan-recognising proteins. Curr Biol 11:R499–501

    Article  CAS  PubMed  Google Scholar 

  • Najmabadi H, Hu H, Garshasbi M, Zemojtel T, Abedini SS, Chen W, Hosseini M, Behjati F, Haas S, Jamali P et al (2011) Deep sequencing reveals 50 novel genes for recessive cognitive disorders. Nature 478:57–63

    Article  CAS  PubMed  Google Scholar 

  • Nakatsukasa K, Nishikawa S, Hosokawa N, Nagata K, Endo T (2001) Mnl1p, an alpha -mannosidase-like protein in yeast Saccharomyces cerevisiae, is required for endoplasmic reticulum-associated degradation of glycoproteins. J Biol Chem 276:8635–8638

    Article  CAS  PubMed  Google Scholar 

  • Need AC, Shashi V, Hitomi Y, Schoch K, Shianna KV, McDonald MT, Meisler MH, Goldstein DB (2012) Clinical application of exome sequencing in undiagnosed genetic conditions. J Med Genet 49:353–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson RF, Glenn KA, Miller VM, Wen H, Paulson HL (2006) A novel route for F-box protein-mediated ubiquitination links CHIP to glycoprotein quality control. J Biol Chem 281:20242–20251

    Article  CAS  PubMed  Google Scholar 

  • Nelson RF, Glenn KA, Zhang Y, Wen H, Knutson T, Gouvion CM, Robinson BK, Zhou Z, Yang B, Smith RJ et al (2007) Selective cochlear degeneration in mice lacking the F-box protein, Fbx2, a glycoprotein-specific ubiquitin ligase subunit. J Neurosci 27:5163–5171

    Article  CAS  PubMed  Google Scholar 

  • Ninagawa S, Okada T, Sumitomo Y, Kamiya Y, Kato K, Horimoto S, Ishikawa T, Takeda S, Sakuma T, Yamamoto T, Mori K (2014) EDEM2 initiates mammalian glycoprotein ERAD by catalyzing the first mannose trimming step. J Cell Biol 206:347–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olivari S, Molinari M (2007) Glycoprotein folding and the role of EDEM1, EDEM2 and EDEM3 in degradation of folding-defective glycoproteins. FEBS Lett 581:3658–3664

    Article  CAS  PubMed  Google Scholar 

  • Pan S, Huang L, McPherson J, Muzny D, Rouhani F, Brantly M, Gibbs R, Sifers RN (2009) Single nucleotide polymorphism-mediated translational suppression of endoplasmic reticulum mannosidase I modifies the onset of end-stage liver disease in alpha1-antitrypsin deficiency. Hepatology 50:275–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan S, Wang S, Utama B, Huang L, Blok N, Estes MK, Moremen KW, Sifers RN (2011) Golgi localization of ERManI defines spatial separation of the mammalian glycoprotein quality control system. Mol Biol Cell 22:2810–2822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan S, Cheng X, Chen H, Castro PD, Ittmann MM, Hutson AW, Zapata SK, Sifers RN (2013a) ERManI is a target of miR-125b and promotes transformation phenotypes in hepatocellular carcinoma (HCC). PLoS One 8:e72829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan S, Cheng X, Sifers RN (2013b) Golgi-situated endoplasmic reticulum alpha-1, 2-mannosidase contributes to the retrieval of ERAD substrates through a direct interaction with gamma-COP. Mol Biol Cell 24:1111–1121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park JH, Strittmatter SM (2007) Nogo receptor interacts with brain APP and Abeta to reduce pathologic changes in Alzheimer’s transgenic mice. Curr Alzheimer Res 4:568–570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park H, Suzuki T, Lennarz WJ (2001) Identification of proteins that interact with mammalian peptide: N-glycanase and implicate this hydrolase in the proteasome-dependent pathway for protein degradation. Proc Natl Acad Sci U S A 98:11163–11168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park JH, Gimbel DA, GrandPre T, Lee JK, Kim JE, Li W, Lee DH, Strittmatter SM (2006) Alzheimer precursor protein interaction with the Nogo-66 receptor reduces amyloid-beta plaque deposition. J Neurosci 26:1386–1395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parodi AJ (2000) Protein glucosylation and its role in protein folding. Annu Rev Biochem 69:69–93

    Article  CAS  PubMed  Google Scholar 

  • Pickart CM (2001) Mechanisms underlying ubiquitination. Annu Rev Biochem 70:503–533

    Article  CAS  PubMed  Google Scholar 

  • Plemper RK, Wolf DH (1999) Retrograde protein translocation: ERADication of secretory proteins in health and disease. Trends Biochem Sci 24:266–270

    Article  CAS  PubMed  Google Scholar 

  • Quan EM, Kamiya Y, Kamiya D, Denic V, Weibezahn J, Kato K, Weissman JS (2008) Defining the glycan destruction signal for endoplasmic reticulum-associated degradation. Mol Cell 32:870–877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rafiq MA, Kuss AW, Puettmann L, Noor A, Ramiah A, Ali G, Hu H, Kerio NA, Xiang Y, Garshasbi M et al (2011) Mutations in the alpha 1,2-mannosidase gene, MAN1B1, cause autosomal-recessive intellectual disability. Am J Hum Genet 89:176–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ron E, Shenkman M, Groisman B, Izenshtein Y, Leitman J, Lederkremer GZ (2011) Bypass of glycan-dependent glycoprotein delivery to ERAD by up-regulated EDEM1. Mol Biol Cell 22:3945–3954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rymen D, Peanne R, Millon MB, Race V, Sturiale L, Garozzo D, Mills P, Clayton P, Asteggiano CG, Quelhas D et al (2013) MAN1B1 deficiency: an unexpected CDG-II. PLoS Genet 9:e1003989

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sakoh-Nakatogawa M, Nishikawa S, Endo T (2009) Roles of protein-disulfide isomerase-mediated disulfide bond formation of yeast Mnl1p in endoplasmic reticulum-associated degradation. J Biol Chem 284:11815–11825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Satoh T, Chen Y, Hu D, Hanashima S, Yamamoto K, Yamaguchi Y (2011) Structural basis for oligosaccharide recognition of misfolded glycoproteins by OS-9 in ER-associated degradation. Mol Cell 40:905–916

    Article  CAS  Google Scholar 

  • Seiler S, Plamann M (2003) The genetic basis of cellular morphogenesis in the filamentous fungus Neurospora crassa. Mol Biol Cell 14:4352–4364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shenkman M, Groisman B, Ron E, Avezov E, Hendershot LM, Lederkremer GZ (2013) A shared endoplasmic reticulum-associated degradation pathway involving the EDEM1 protein for glycosylated and nonglycosylated proteins. J Biol Chem 288:2167–2178

    Article  CAS  PubMed  Google Scholar 

  • Sitia R, Braakman I (2003) Quality control in the endoplasmic reticulum protein factory. Nature 426:891–894

    Article  CAS  PubMed  Google Scholar 

  • Smith MH, Ploegh HL, Weissman JS (2011) Road to ruin: targeting proteins for degradation in the endoplasmic reticulum. Science 334:1086–1090

    Article  CAS  PubMed  Google Scholar 

  • Su YA, Hutter CM, Trent JM, Meltzer PS (1996) Complete sequence analysis of a gene (OS-9) ubiquitously expressed in human tissues and amplified in sarcomas. Mol Carcinog 15:270–275

    Article  CAS  PubMed  Google Scholar 

  • Suzuki T (2007) Cytoplasmic peptide: N-glycanase and catabolic pathway for free N-glycans in the cytosol. Semin Cell Dev Biol 18:762–769

    Article  CAS  PubMed  Google Scholar 

  • Suzuki T (2015) The cytoplasmic peptide: N-glycanase (Ngly1) – basic science meets a human genetic disorder. J Biochem 157:23–34

    Google Scholar 

  • Suzuki T, Lennarz WJ (2003) Hypothesis: a glycoprotein-degradation complex formed by protein-protein interaction involves cytoplasmic peptide: N-glycanase. Biochem Biophys Res Commun 302:1–5

    Article  CAS  PubMed  Google Scholar 

  • Suzuki T, Kitajima K, Inoue S, Inoue Y (1994) Does an animal peptide: N-glycanase have the dual role as an enzyme and a carbohydrate-binding protein? Glycoconj J 11:469–476

    Article  CAS  PubMed  Google Scholar 

  • Suzuki T, Kitajima K, Inoue Y, Inoue S (1995) Carbohydrate-binding property of peptide: N-glycanase from mouse fibroblast L-929 cells as evaluated by inhibition and binding experiments using various oligosaccharides. J Biol Chem 270:15181–15186

    Article  CAS  PubMed  Google Scholar 

  • Suzuki T, Park H, Hollingsworth NM, Sternglanz R, Lennarz WJ (2000) PNG1, a yeast gene encoding a highly conserved peptide: N-glycanase. J Cell Biol 149:1039–1052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki T, Park H, Kwofie MA, Lennarz WJ (2001a) Rad23 provides a link between the Png1 deglycosylating enzyme and the 26 S proteasome in yeast. J Biol Chem 276:21601–21607

    Article  CAS  PubMed  Google Scholar 

  • Suzuki T, Park H, Till EA, Lennarz WJ (2001b) The PUB domain: a putative protein-protein interaction domain implicated in the ubiquitin-proteasome pathway. Biochem Biophys Res Commun 287:1083–1087

    Article  CAS  PubMed  Google Scholar 

  • Suzuki T, Park H, Lennarz WJ (2002) Cytoplasmic peptide: N-glycanase (PNGase) in eukaryotic cells: occurrence, primary structure, and potential functions. FASEB J 16:635–641

    Article  CAS  PubMed  Google Scholar 

  • Suzuki T, Kwofie MA, Lennarz WJ (2003) Ngly1, a mouse gene encoding a deglycosylating enzyme implicated in proteasomal degradation: expression, genomic organization, and chromosomal mapping. Biochem Biophys Res Commun 304:326–332

    Article  CAS  PubMed  Google Scholar 

  • Suzuki T, Hara I, Nakano M, Zhao G, Lennarz WJ, Schindelin H, Taniguchi N, Totani K, Matsuo I, Ito Y (2006) Site-specific labeling of cytoplasmic peptide: N-glycanase by N, N’-diacetylchitobiose-related compounds. J Biol Chem 281:22152–22160

    Article  CAS  PubMed  Google Scholar 

  • Suzuki T, Tanabe K, Hara I, Taniguchi N, Colavita A (2007) Dual enzymatic properties of the cytoplasmic peptide: N-glycanase in C. elegans. Biochem Biophys Res Commun 358:837–841

    Article  CAS  PubMed  Google Scholar 

  • Szathmary R, Bielmann R, Nita-Lazar M, Burda P, Jakob CA (2005) Yos9 protein is essential for degradation of misfolded glycoproteins and may function as lectin in ERAD. Mol Cell 19:765–775

    Article  CAS  PubMed  Google Scholar 

  • Tanabe K, Lennarz WJ, Suzuki T (2006) A cytoplasmic peptide: N-glycanase. Methods Enzymol 415:46–55

    Article  CAS  PubMed  Google Scholar 

  • Termine DJ, Moremen KW, Sifers RN (2009) The mammalian UPR boosts glycoprotein ERAD by suppressing the proteolytic downregulation of ER mannosidase I. J Cell Sci 122:976–984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thalmann R, Henzl MT, Thalmann I (1997) Specific proteins of the organ of Corti. Acta Otolaryngol 117:265–268

    Article  CAS  PubMed  Google Scholar 

  • Tremblay LO, Herscovics A (1999) Cloning and expression of a specific human alpha 1,2-mannosidase that trims Man9GlcNAc2 to Man8GlcNAc2 isomer B during N-glycan biosynthesis. Glycobiology 9:1073–1078

    Article  CAS  PubMed  Google Scholar 

  • Tyler RE, Pearce MM, Shaler TA, Olzmann JA, Greenblatt EJ, Kopito RR (2012) Unassembled CD147 is an endogenous endoplasmic reticulum-associated degradation substrate. Mol Biol Cell 23:4668–4678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ushioda R, Hoseki J, Araki K, Jansen G, Thomas DY, Nagata K (2008) ERdj5 is required as a disulfide reductase for degradation of misfolded proteins in the ER. Science 321:569–572

    Article  CAS  PubMed  Google Scholar 

  • Wiertz EJ, Jones TR, Sun L, Bogyo M, Geuze HJ, Ploegh HL (1996a) The human cytomegalovirus US11 gene product dislocates MHC class I heavy chains from the endoplasmic reticulum to the cytosol. Cell 84:769–779

    Article  CAS  PubMed  Google Scholar 

  • Wiertz EJ, Tortorella D, Bogyo M, Yu J, Mothes W, Jones TR, Rapoport TA, Ploegh HL (1996b) Sec61-mediated transfer of a membrane protein from the endoplasmic reticulum to the proteasome for destruction. Nature 384:432–438

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Swulius MT, Moremen KW, Sifers RN (2003) Elucidation of the molecular logic by which misfolded alpha 1-antitrypsin is preferentially selected for degradation. Proc Natl Acad Sci U S A 100:8229–8234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Y, Termine DJ, Swulius MT, Moremen KW, Sifers RN (2007) Human endoplasmic reticulum mannosidase I is subject to regulated proteolysis. J Biol Chem 282:4841–4849

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi Y, Hirao T, Sakata E, Kamiya Y, Kurimoto E, Yoshida Y, Suzuki T, Tanaka K, Kato K (2007) Fbs1 protects the malfolded glycoproteins from the attack of peptide: N-glycanase. Biochem Biophys Res Commun 362:712–716

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi D, Hu D, Matsumoto N, Yamamoto K (2010) Human XTP3-B binds to alpha1-antitrypsin variant null (Hong Kong) via the C-terminal MRH domain in a glycan-dependent manner. Glycobiology 20:348–355

    Article  CAS  PubMed  Google Scholar 

  • Yoshida Y, Tanaka K (2010) Lectin-like ERAD players in ER and cytosol. Biochim Biophys Acta 1800:172–180

    Article  CAS  PubMed  Google Scholar 

  • Yoshida Y, Chiba T, Tokunaga F, Kawasaki H, Iwai K, Suzuki T, Ito Y, Matsuoka K, Yoshida M, Tanaka K et al (2002) E3 ubiquitin ligase that recognizes sugar chains. Nature 418:438–442

    Article  CAS  PubMed  Google Scholar 

  • Yoshida Y, Tokunaga F, Chiba T, Iwai K, Tanaka K, Tai T (2003) Fbs2 is a new member of the E3 ubiquitin ligase family that recognizes sugar chains. J Biol Chem 278:43877–43884

    Article  CAS  PubMed  Google Scholar 

  • Yoshida Y, Adachi E, Fukiya K, Iwai K, Tanaka K (2005) Glycoprotein-specific ubiquitin ligases recognize N-glycans in unfolded substrates. EMBO Rep 6:239–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida Y, Murakami A, Iwai K, Tanaka K (2007) A neural-specific F-box protein Fbs1 functions as a chaperone suppressing glycoprotein aggregation. J Biol Chem 282:7137–7144

    Article  CAS  PubMed  Google Scholar 

  • Yoshida Y, Murakami A, Tanaka K (2011) Skp1 stabilizes the conformation of F-box proteins. Biochem Biophys Res Commun 410:24–28

    Article  CAS  PubMed  Google Scholar 

  • Zhao G, Li G, Zhou X, Matsuo I, Ito Y, Suzuki T, Lennarz WJ, Schindelin H (2009) Structural and mutational studies on the importance of oligosaccharide binding for the activity of yeast PNGase. Glycobiology 19:118–125

    Article  CAS  PubMed  Google Scholar 

  • Zhou X, Zhao G, Truglio JJ, Wang L, Li G, Lennarz WJ, Schindelin H (2006) Structural and biochemical studies of the C-terminal domain of mouse peptide-N-glycanase identify it as a mannose-binding module. Proc Natl Acad Sci U S A 103:17214–17219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou X, Hu X, He W, Tang X, Shi Q, Zhang Z, Yan R (2011) Interaction between amyloid precursor protein and Nogo receptors regulates amyloid deposition. FASEB J 25:3146–3156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zuber C, Cormier JH, Guhl B, Santimaria R, Hebert DN, Roth J (2007) EDEM1 reveals a quality control vesicular transport pathway out of the endoplasmic reticulum not involving the COPII exit sites. Proc Natl Acad Sci U S A 104:4407–4412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

We thank Dr. Akira Hosomi (Glycometabolome Team, RIKEN) for critically reading our manuscript.

Note Recently, it is reported that EDEM2 processes mannose from the middle (B) branch of N-glycans in the vertebrate ER (Ninagawa et al. 2014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobuko Hosokawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Hosokawa, N., Suzuki, T. (2015). N-Glycans and Quality Control of Proteins. In: Suzuki, T., Ohtsubo, K., Taniguchi, N. (eds) Sugar Chains. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55381-6_1

Download citation

Publish with us

Policies and ethics