The Shapes of Nuclei

  • Noboru Takigawa
  • Kouhei Washiyama


The nucleus behaves like a liquid drop as the mass formula and the saturation of density imply. However, a significant difference from the classical liquid drop, which is always spherical in order to make the energy by surface tension minimum, is that many nuclei are deformed except for those near the closed shells. The shape of nuclei is one of the central research subjects of nuclear structure together with the size of nuclei. The shape of nuclei is intimately related to the collective excitations of nuclei, and also strongly affects nuclear reactions including heavy-ion fusion reactions (see Balantekin and Takigawa, Rev. Mod. Phys. 70, 77 (1998); Dasgupta et al., Annu. Rev. Nucl. Part. Sci. 48, 401 (1998); Hagino et al., Comput. Phys. Commun. 123, 143 (1999); Esbensen, Nucl. Phys. A 352, 147 (1981); Hagino and Takigawa, Butsuri 57, 588 (2002); Hagino and Takigawa, Prog. Theor. Phys. 128, 1001 (2012) [1, 2, 3, 4, 5, 6]). In this chapter we describe several basic concepts concerning the shape of nuclei.


Deformation Parameter Nuclear Shape Quadrupole Deformation Interact Boson Model Oblate Shape 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    A.B. Balantekin, N. Takigawa, Rev. Mod. Phys. 70, 77 (1998)ADSCrossRefGoogle Scholar
  2. 2.
    M. Dasgupta, D.J. Hinde, N. Rowley, A.M. Stefanini, Annu. Rev. Nucl. Part. Sci. 48, 401 (1998)ADSCrossRefGoogle Scholar
  3. 3.
    K. Hagino, N. Rowley, A.T. Kruppa, Comput. Phys. Commun. 123, 143 (1999)ADSCrossRefGoogle Scholar
  4. 4.
    H. Esbensen, Nucl. Phys. A 352, 147 (1981)ADSCrossRefGoogle Scholar
  5. 5.
    K. Hagino, N. Takigawa, Butsuri 57, 588 (2002)Google Scholar
  6. 6.
    K. Hagino, N. Takigawa, Prog. Theor. Phys. 128, 1001 (2012)CrossRefGoogle Scholar
  7. 7.
    C.M. Lederer, V. Shirley, Table of Isotopes, 7th edn. (Wiley, New York, 1978)Google Scholar
  8. 8.
    K. Heyde, J.L. Wood, Rev. Mod. Phys. 83, 1467 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    A. Messiah, Quantum Mechanics, vol. II (Elsevier, Amsterdam, 1962)Google Scholar
  10. 10.
    A. Bohr, B.R. Mottelson, Nuclear Structure, vol. I (Benjamin, New York, 1969)MATHGoogle Scholar
  11. 11.
    F. Iachello, A. Arima, The Interacting Boson Model (Cambridge University Press, Cambridge, 1987)CrossRefGoogle Scholar
  12. 12.
    G.E. Brown, Unified Theory of Nuclear Models and Forces (North-Holland, Amsterdam, 1967)Google Scholar
  13. 13.
    A. Bohr, B.R. Mottelson, Nuclear Structure, vol. II (Benjamin, New York, 1975)MATHGoogle Scholar
  14. 14.
    S.G. Nilsson, Mat. Fys. Medd. Dan. Vid. Selsk. 29(16), (1955)Google Scholar
  15. 15.
    C. Gustafson, I.L. Lam, B. Nilsson, S.G. Nilsson, Ark. Fys. 36, 613 (1967)Google Scholar
  16. 16.
    D.L. Hendrie et al., Phys. Lett. B 26, 127 (1968)ADSCrossRefGoogle Scholar
  17. 17.
    V.M. Strutinsky, Yad. Fiz. 3, 614 (1966); Sov. J. Nucl. Phys. 3, 449 (1966); Nucl. Phys. A 95, 420 (1967); Nucl. Phys. A 122, 1 (1968)Google Scholar
  18. 18.
    P. Möller, J.R. Nix, W.D. Myers, W.J. Swiatecki, At. Data Nucl. Data Tables 59, 185 (1995)ADSCrossRefGoogle Scholar
  19. 19.
    P. Ring, P. Schuck, The Nuclear Many-Body problem (Springer, Berlin, 1980)CrossRefGoogle Scholar
  20. 20.
    S. Yoshida, N. Takigawa, Phys. Rev. C 55, 1255 (1997)ADSCrossRefGoogle Scholar
  21. 21.
    P.-G. Reinhard, M. Rufa, J. Maruhn, W. Greiner, J. Friedrich, Z. Phys. A 323, 13 (1986)Google Scholar
  22. 22.
    P. Möller, J.R. Nix, Nucl. Phys. A 536, 20 (1992)ADSCrossRefGoogle Scholar
  23. 23.
    P.J. Nolan, P.J. Twin, Annu. Rev. Nucl. Part. Sci. 38, 533 (1988); R.V.F. Janssens, T.L. Khoo, Annu. Rev. Nucl. Part. Sci. 41, 321 (1991)Google Scholar
  24. 24.
    B. Singh, R.B. Firestone, S.Y. Frank Chu, Table of Superdeformed Nuclear Bands and Fission Isomers, WWW Edition, Updated June 1997; An updated version of the figure can be found in B. Singh, R. Zywina, R.B. Firestone. Nucl. Data Sheets 97, 241 (2002)Google Scholar
  25. 25.
    I. Ragnarsson, S.G. Nilsson, R.K. Sheline, Phys. Rep. 45, 1 (1987)Google Scholar

Copyright information

© Springer Japan 2017

Authors and Affiliations

  1. 1.Department of PhysicsGraduate School of Science, Tohoku UniversitySendaiJapan
  2. 2.Center for Computational SciencesUniversity of TsukubaTsukubaJapan

Personalised recommendations