Skip to main content

Graphene/Metal Contact

  • Chapter
  • First Online:
Frontiers of Graphene and Carbon Nanotubes

Abstract

The higher the electron mobility is, the stricter the requirement for the contact resistivity becomes, especially for graphene, which has an extremely high electron mobility. Although the ohmic contact due to no bandgap was reported in the supplemental of the first graphene paper, the contact resistivity is intrinsically high due to the small density of states in graphene. In this chapter, the issues concerning metal/graphene interface properties are reviewed, and the guidelines to reduce the contact resistivity are discussed, based on the recent understanding of metal/graphene/substrate interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nagashio K, Nishimura T, Kita K, Toriumi A (2009) Metal/graphene contact as a performance killer of ultra-high mobility graphene -analysis of intrinsic mobility and contact resistance. IEDM Tech Dig 565

    Google Scholar 

  2. Blake P, Yang R, Morozov SV, Schedin F, Ponomarenko LA, Zhukov AA, Nair RR, Grigorieva IV, Novoselov KS, Geim AK (2009) Influence of metal contacts and charge inhomogeneity on transport properties of graphene near the neutrality point. Solid State Commun 149:1068

    Article  Google Scholar 

  3. Nagashio K, Nishimura T, Kita K, Toriumi A (2010) Contact resistivity and current flow path at metal/graphene contact. Appl Phys Lett 97:143514

    Article  Google Scholar 

  4. Venugopal A, Colombo L, Vogel EM (2010) Contact resistance in few and multilayer graphene devices. Appl Phys Lett 96:013512

    Article  Google Scholar 

  5. Russo S, Cracuin MF, Yamamoto M, Morpurgo AF, Tarucha S (2010) Contact resistance in graphene-based devices. Physica E 42:677

    Article  Google Scholar 

  6. Hsu A, Wang H, Kim KK, Kong K, Palacios T (2011) Impact of graphene interface quality on contact resistance and RF device performance. IEEE Electron Device Lett 32:1008

    Article  Google Scholar 

  7. Nagashio K, Toriumi A (2011) Density-of-states limited contact resistance in graphene field-effect transistors. Jpn J Appl Phys 50:070108

    Article  Google Scholar 

  8. Xia F, Perebeinos V, Lin Y-M, Wu Y, Avouris P (2011) The origins and limits of metal–graphene junction resistance. Nat Nanotech 6:179

    Article  Google Scholar 

  9. Robinson JA, LaBella M, Zhu M, Hollander M, Kasarda R, Hughes Z, Trumbull K, Cavalero R, Snyder D (2011) Contacting graphene. Appl Phys Lett 98:053103

    Article  Google Scholar 

  10. Malec CE, Davidovic D (2011) Vacuum-annealed Cu contacts for graphene electronics. Solid State Commun 151:1791

    Article  Google Scholar 

  11. Franklin AD, Han S-J, Bol AA, Haensch W (2011) Effects of nanoscale contacts to graphene. IEEE Electron Device Lett 32:1035

    Article  Google Scholar 

  12. Watanabe E, Conwill A, Tsuya D, Koide Y (2012) Low contact resistance metals for graphene based devices. Diam Relat Mater 24:171

    Article  Google Scholar 

  13. Franklin AD, Han S-J, Bol AA, Perebeinos V (2012) Double contacts for improved performance of graphene transistors. IEEE Electron Device Lett 33:17

    Article  Google Scholar 

  14. Wolf EL (2012) Principles of electron tunneling spectroscopy. Oxford University Press, New York

    Google Scholar 

  15. Sze SM, Ng KK (2007) Physics of semiconductor devices. John Wiley & Sons, Hoboken, New Jersey

    Google Scholar 

  16. Tersoff J (1999) Contact resistance of carbon nanotubes. Appl Phys Lett 74:2122

    Article  Google Scholar 

  17. Floyd RB, Walmsley DG (1978) Tunnelling conductance of clean and doped Al-I-Pb junctions. J Phys C: Solid State Phys 11:4601

    Article  Google Scholar 

  18. Heine V (1965) Theory of surface states. Phys Rev 138:A1689

    Article  Google Scholar 

  19. Burns G (1985) Solid state physics. Academic Press, Orland, Florida

    Google Scholar 

  20. Miyazaki H, Odaka S, Sato T, Tanaka S, Goto H, Kanda A, Tsukagoshi K, Ootuka Y, Aoyagi Y (2008) Inter-layer screening length to electric field in thin graphite film. Appl Phys Express 1:034007

    Article  Google Scholar 

  21. Giovannetti G, Khomyakov PA, Brocks G, Karpan VM, van der Brink J, Kelly PJ (2008) Doping graphene with metal contacts. Phys Rev Lett 101:026803

    Article  Google Scholar 

  22. Bangert U, Bleloch A, Gass MH, Seepujak A, van den Berg J (2010) Doping of few-layered graphene and carbon nanotubes using ion implantation. Phys Rev B 81:245423

    Article  Google Scholar 

  23. Yuge K (2009) Phase stability of boron carbon nitride in a heterographene structure: a first-principles stud. Phys Rev B 79:144109

    Article  Google Scholar 

  24. Khomyakov PA, Giovannetti G, Rusu PC, Brocks G, van den Brink J, Kelly PJ (2009) First-principles study of the interaction and charge transfer between graphene and metals. Phys Rev B 79:195425

    Article  Google Scholar 

  25. Vanin M, Mortensen JJ, Kelkkanen AK, Garcia-Lastra JM, Thygesen KS, Jacobsen KW (2010) Graphene on metals: a van der Waals density functional study. Phys Rev B 81 081408(R)

    Google Scholar 

  26. Oshima C, Nagashima A (1997) Ultra-thin epitaxial films of graphite and hexagonal boron nitride on solid surfaces. J Phys Condens Matter 9:1

    Article  Google Scholar 

  27. Varykhalov A, Sanchez-Barriga J, Shkin AM, Biswas C, Vescovo E, Rybkin A, Marchenko D, Rader O (2008) Electronic and magnetic properties of quasifreestanding graphene on Ni. Phys Rev Lett 101:157601

    Article  Google Scholar 

  28. Hammer B, Norskov JK (1995) Why gold is the noblest of all the metals. Nature 376:238

    Article  Google Scholar 

  29. Hammer B, Norskov JK (2000) Theoretical surface science and catalysis—calculations and concepts. Adv Catal 45:71

    Google Scholar 

  30. Batzill M (2012) The surface science of graphene: metal interfaces, CVD synthesis, nanoribbons, chemical modifications, and defects. Surf Sci Rep 67:83

    Article  Google Scholar 

  31. Ishigami M, Chen JH, Cullen WG, Fuhrer MS, Willians ED (2007) Atomic structure of graphene on SiO2. Nano Lett 7:1643

    Article  Google Scholar 

  32. Cheng Z, Zhou Q, Wang C, Li Q, Wang C, Fang Y (2011) Toward intrinsic graphene surfaces: a systematic study on thermal annealing and wet-chemical treatment of SiO2-supported graphene devices. Nano Lett 11:767

    Article  Google Scholar 

  33. Goossens AM, Calado VE, Barreiro A, Watanabe K, Taniguchi T, Vandersypen LMK (2012) Mechanical cleaning of graphene. Appl Phys Lett 100:073110

    Article  Google Scholar 

  34. Acharya M, Strano MS, Mathews JP, Billinge SJL, Petkov V, Subramoney S, Foley HC (1999) Simulation of nanoporous carbons: a chemically constrained structure. Philos Mag B 79:1499

    Article  Google Scholar 

  35. Moriyama T, Nagashio K, Nishimura T, Toriumi A (2013) Carrier density modulation in graphene underneath Ni electrode. J Appl Phys 114:024503

    Article  Google Scholar 

  36. Chen Z, Appenzeller J (2008) Mobility extraction and quantum capacitance impact in high performance graphene field-effect transistor devices. IEDM Tech Dig 509

    Google Scholar 

  37. Ponomarenko LA, Yang R, Grobachev RV, Blake P, Mayorov AS, Novoselov KS, Katsnelson MI, Geim AK (2010) Density of states and zero landau level probed through capacitance of graphene. Phys Rev Lett 105:136801

    Article  Google Scholar 

  38. Xu H, Zhang Z, Wang Z, Wang S, Liang X, Peng L-M (2011) Quantum capacitance limited vertical scaling of graphene field-effect transistor. ACS NANO 5:2340

    Article  Google Scholar 

  39. Nagashio K, Nishimura T, Toriumi A (2013) Estimation of residual carrier density near the Dirac point in graphene through quantum capacitance measurement. Appl Phys Lett 102:173507

    Article  Google Scholar 

  40. Fang T, Konar A, Xing H, Jena D (2007) Carrier statistics and quantum capacitance of graphene sheets and ribbons. Appl Phys Lett 91:092109

    Article  Google Scholar 

  41. Ifuku R, Nagashio K, Nishimura T, Toriumi A (2013) The density of states of graphene underneath a metal electrode and its correlation with the contact resistivity. Appl Phys Lett 103:033514

    Article  Google Scholar 

  42. Li G, Luican A, Andrei EY (2009) Scanning tunneling spectroscopy of graphene on graphite. Phys Rev Lett 102:176804

    Article  Google Scholar 

  43. Monch W (2004) Electronic properties of semiconductor interface. Springer, Berlin

    Book  Google Scholar 

  44. Tersoff J (1984) Schottky barrier heights and the continuum of gap states. Phys Rev Lett 52:465

    Article  Google Scholar 

  45. Ziman JM (1976) Principles of the theory of solids. Cambridge University Press, Cambridge

    Google Scholar 

  46. Pi K, McCreary KM, Bao W, Han W, Chiang YF, Li Y, Tsai S-W, Lau CN, Kawakami RK (2009) Electronic doping and scattering by transition metals on graphene. Phys Rev B 80:075406

    Article  Google Scholar 

  47. Xia F, Mueller T, Golizadeh-Mojarad R, Feritag M, Lin Y-M, Tsang J, Perebeinos V, Avouris P (2009) Photocurrent imaging and efficient photon detection in a graphene transistor. Nano Lett 9:1039

    Article  Google Scholar 

  48. Yu Y-J, Zhao Y, Ryu S, Brus LE, Kim KS, Kim P (2009) Tuning the graphene work function by electric field effect. Nano Lett 9:3430

    Article  Google Scholar 

  49. Nagamura N, Horiba K, Toyoda S, Kurosumi S, Shinohara T, Oshima M, Fukidome H, Suemitsu M, Nagashio K, Toriumi A (2013) Direct observation of charge transfer region at interfaces in graphene devices. Appl Phys Lett 102:241604

    Article  Google Scholar 

  50. Khomyakov PA, Starikov AA, Brocks G, Kelly PJ (2010) Nonlinear screening of charges induced in graphene by metal contacts. Phys Rev B 82:115437

    Article  Google Scholar 

  51. Huard B, Stander N, Sulpizio JA, Goldhaber-Gordon D (2008) Evidence of the role of contacts on the observed electron–hole asymmetry in graphene Phys Rev B 78 121402(R)

    Google Scholar 

  52. Huard B, Sulpizio JA, Stander N, Todd K, Yang B, Goldhaber-Gordon D (2007) Transport measurements across a tunable potential barrier in graphene. Phys Rev Lett 98:236803

    Article  Google Scholar 

  53. Nouchi R, Shiraishi M, Suzuki Y (2008) Transfer characteristics in graphene field-effect transistors with Co contacts. Appl Phys Lett 93:152104

    Article  Google Scholar 

  54. Lee EJH, Balasibramanian K, Weitz RT, Burghard M, Kern L (2008) Contact and edge effects in graphene devices. Nat Nanotech 3:486

    Article  Google Scholar 

  55. Schroder DK (2006) Semiconductor material and device characterization. John Wiley & Sons, Hoboken, New Jersey

    Google Scholar 

  56. Proctor SJ, Linholm LW, Mazer JA (1983) Direct measurements of interfacial contact resistance, end contact resistance, and interfacial contact layer uniformity. IEEE Trans Electron Device 30:1535

    Article  Google Scholar 

  57. Nagashio K, Nishimura T, Kita K, Toriumi A (2009) Mobility variations in mono- and multi-layer graphene films. Appl Phys Express 2:025003

    Article  Google Scholar 

  58. Nagashio K, Nishimura T, Kita K, Toriumi A (2010) Systematic investigation of the intrinsic channel properties and contact resistance of monolayer and multilayer graphene field-effect transistor. Jpn J Appl Phys 49:051304

    Article  Google Scholar 

  59. Xu H, Wang S, Zhang Z, Wang Z, Xu H, Peng L-M (2012) Contact length scaling in graphene field-effect transistors. Appl Phys Lett 100:103501

    Article  Google Scholar 

  60. Chen Z, Appenzeller J (2009) Gate modulation of graphene contacts – on the scaling of graphene FETs. Symp VLSI Tech Dig 128

    Google Scholar 

  61. Berdebes D, Low T, Sui Y, Appenzeller J, Lundstrom MS (2011) Substrate gating of contact resistance in graphene transistors. IEEE Trans Electron Device 58:3925

    Article  Google Scholar 

  62. Knoch J, Chen Z, Appenzeller J (2012) Properties of metal–graphene contacts. IEEE Trans Nanotechnol 11:513

    Article  Google Scholar 

  63. Huang B-C, Zhang M, Wang Y, Woo J (2011) Contact resistance in top-gated graphene field-effect transistors. Appl Phys Lett 99:032107

    Article  Google Scholar 

  64. Li W, Liang Y, Yu D, Peng L, Pernstich KP, Shen T, Hight Walker AR, Cheng G, Hacker CA, Richter CA, Li Q, Gundlach DJ, Liang X (2013) Ultraviolet/ozone treatment to reduce metal-graphene contact resistance. Appl Phys Lett 102:183110

    Article  Google Scholar 

  65. Gong C, Hinojos D, Wang W, Nijem N, Shan B, Wallace RM, Cho K, Chabal Y (2012) Metal_graphene_metal sandwich contacts for enhanced interface bonding and work function control. ACS NANO 6:5381

    Article  Google Scholar 

  66. Adamska L, Lin Y, Ross AJ, Batzill M, Oleynik II (2012) Atomic and electronic structure of simple metal/graphene and complex metal/graphene/metal interfaces. Phys Rev B 85:195443

    Article  Google Scholar 

  67. Smith JT, Franklin AD, Farmer DB, Dimitrakopoulos CD (2013) Reducing contact resistance in graphene devices through contact area patterning. ACS NANO 7:3661

    Article  Google Scholar 

  68. Nagareddy VK, Nikitina IP, Gaskill DK, Tedesco JL, Myers-Ward RL, Eddy CR, Goss JP, Wright NG, Horsafall AB (2011) High temperature measurements of metal contacts on epitaxial graphene. Appl Phys Lett 99:073506

    Article  Google Scholar 

  69. Nagashio K, Ifuku R, Moriyama T, Nishimura T, Toriumi A (2012) Intrinsic graphene/metal contact IEDM Tech Dig 68

    Google Scholar 

  70. Wang L, Meric I, Huang PY, Gao Q, Gao Y, Tran H, Taniguchi T, Watanabe K, Campos LM, Muller DA, Guo J, Kim P, Hone J, Shepard KL, Dean CR (2013) One-dimensional electrical contact to a two-dimensional material. Science 342:614

    Article  Google Scholar 

  71. Chai Y, Hazeghi A, Takei K, Chen H-Y, Chan PCH, Javay A, Wong H-SP (2012) Low-resistance electrical contact to carbon nanotubes with graphitic interfacial layer. IEEE Trans Electron Device 59:12

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the present and former colleagues and students, especially R. Ifuku and T. Moriyama. We thank Drs. Nabatame and Narushima, NIMS, for the fabrication of the SiN membrane masks. We are grateful to Covalent Materials Corporation for kindly providing the Kish graphite. K. N. acknowledges the financial support from the JSPS through its ``Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST Program)'', from a Grant-in-Aid for Scientific Research on Innovative Areas and for Young scientists, and from PRESTO, Japan Science and Technology Agency by the Ministry of Education, Culture, Sports, Science and Technology in Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kosuke Nagashio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Nagashio, K., Toriumi, A. (2015). Graphene/Metal Contact. In: Matsumoto, K. (eds) Frontiers of Graphene and Carbon Nanotubes. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55372-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55372-4_5

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55371-7

  • Online ISBN: 978-4-431-55372-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics