Skip to main content

Nanomechanical Application of CNT

  • Chapter
  • First Online:
Frontiers of Graphene and Carbon Nanotubes
  • 3529 Accesses

Abstract

Carbon nanotubes (CNT) are appropriate for nanoscale mechanical system such as nano-switches and nanomechanical resonators for mass sensor application because of their lightweight, high aspect ratio, and extraordinary mechanical properties. The resonator miniaturization is crucial in bringing highly sensitive force and mass detection into practice, so that the CNTs are appropriate for the force and mass sensing. Here, we focus on highly sensitive mass and force detections using CNT mechanical resonators as nanomechanical application of CNTs. Loss factors of the multiwall-CNT resonators, which determine the sensitivity of the resonator, are strongly correlated to the CNT diameter due to the van der Waals interaction between layers. Down-mixing method for detecting the resonance frequencies of CNT mechanical resonators is one of key techniques to achieve the extremely high sensitivity. The doubly clamped CNT resonators consisting of single-wall CNTs achieved the sensitivity with ∼10 zN Hz-1/2 at 1.2 K in ultrahigh vacuum. For the ambient condition, which is preferable for the biological samples, optical detection using opt-mechanical heterodyne technique was proposed and achieved high mass sensitivity with ∼100 zg under the atmospheric conditions. We believe that this extraordinarily high sensitivity offers new possibilities for the investigation of a wide range of materials, especially nanoscale materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kim P, Lieber CM (1999) Nanotube nanotweezers. Science 286:2148–2150

    Article  Google Scholar 

  2. Akita S, Nakayama Y, Mizooka S, Takano Y, Okawa T, Miyatake Y, Yamanaka S, Tsuji M, Nosaka T (2001) Nanotweezers consisting of carbon nanotubes operating in an atomic force microscope. Appl Phys Lett 79:1691–1693

    Article  Google Scholar 

  3. Cha SN, Jang JE, Choi Y, Amaratunga GAJ, Kang DJ, Hasko DG, Jung JE, Kim JM (2005) Fabrication of a nanoelectromechanical switch using a suspended carbon nanotube. Appl Phys Lett 86:083105

    Article  Google Scholar 

  4. Jang JE, Cha SN, Choi Y, Amaratunga GAJ, Kang DJ, Hasko DG, Jung JE, Kim JM (2005) Nanoelectromechanical switches with vertically aligned carbon nanotubes. Appl Phys Lett 87:163114

    Article  Google Scholar 

  5. Jang JE, Cha SN, Choi YJ, Kang DJ, Butler TP, Hasko DG, Jung JE, Kim JM, Amaratunga GA (2008) Nanoscale memory cell based on a nanoelectromechanical switched capacitor. Nat Nanotechnol 3:26–30

    Article  Google Scholar 

  6. Kaul AB, Wong EW, Epp L, Hunt BD (2006) Electromechanical carbon nanotube switches for high-frequency applications. Nano Lett 6:942–947

    Article  Google Scholar 

  7. Kinaret JM, Nord T, Viefers S (2003) A carbon-nanotube-based nanorelay. Appl Phys Lett 82:1287–1289

    Article  Google Scholar 

  8. Lee SW, Lee DS, Morjan RE, Jhang SH, Sveningsson M, Nerushev OA, Park YW, Campbell EEB (2004) A three-terminal carbon nanorelay. Nano Lett 4:2027–2030

    Article  Google Scholar 

  9. Loh OY, Espinosa HD (2012) Nanoelectromechanical contact switches. Nat Nanotechnol 7:283–295

    Article  Google Scholar 

  10. Poncharal P, Wang ZL, Ugarte D, de Heer WA (1999) Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science 283:1513–1516

    Article  Google Scholar 

  11. Nishio M, Sawaya S, Akita S, Nakayama Y (2005) Carbon nanotube oscillators toward zeptogram detection. Appl Phys Lett 86:133111

    Article  Google Scholar 

  12. Nishio M, Sawaya S, Akita S, Nakayama Y (2005) Density of electron-beam-induced amorphous carbon deposits. J Vac Sci Technol B 23:1975–1979

    Article  Google Scholar 

  13. Sawaya S, Akita S, Nakayama Y (2006) In situ mass measurement of electron-beam-induced nanometer-sized W-related deposits using a carbon nanotube cantilever. Appl Phys Lett 89:193115

    Article  Google Scholar 

  14. Jensen K, Kim K, Zettl A (2008) An atomic-resolution nanomechanical mass sensor. Nat Nanotechnol 3:533–537

    Article  Google Scholar 

  15. Treacy MMJ, Ebbesen TW, Gibson JM (1996) Exceptionally high Young's modulus observed for individual carbon nanotubes. Nature 381:678–680

    Article  Google Scholar 

  16. Wong EW, Sheehan PE, Lieber CM (1997) Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes. Science 277:1971–1975

    Article  Google Scholar 

  17. Akita S, Nishijima H, Nakayama Y, Tokumasu F, Takeyasu K (1999) Carbon nanotube tips for a scanning probe microscope: their fabrication and properties. J Phys D Appl Phys 32:1044–1048

    Article  Google Scholar 

  18. Sawaya, S, Arie, T, Akita, S (2011) Diameter-dependent dissipation of vibration energy of cantilevered multiwall carbon nanotubes. Nanotechnology 22:165702

    Google Scholar 

  19. Sazonova V, Yaish Y, Ustunel H, Roundy D, Arias TA, McEuen PL (2004) A tunable carbon nanotube electromechanical oscillator. Nature 431:284–287

    Article  Google Scholar 

  20. Peng HB, Chang CW, Aloni S, Yuzvinsky TD, Zettl A (2006) Ultrahigh frequency nanotube resonators. Phys Rev Lett 97:087203

    Google Scholar 

  21. Witkamp, B, Poot M, Pathangi H, Huttel AK, van der Zant HSJ (2008) Self-detecting gate-tunable nanotube paddle resonators. Appl Phys Lett 93:111909

    Google Scholar 

  22. Wu CC, Zhong ZH (2011) Capacitive spring softening in single-walled carbon nanotube nanoelectromechanical resonators. Nano Lett 11:1448–1451

    Article  Google Scholar 

  23. Steele GA, Huttel AK, Witkamp B, Poot M, Meerwaldt HB, Kouwenhoven LP, van der Zant HSJ (2009) Strong coupling between single-electron tunneling and nanomechanical motion. Science 325:1103–1107

    Article  Google Scholar 

  24. Lassagne B, Tarakanov Y, Kinaret J, Garcia-Sanchez D, Bachtold A (2009) Coupling mechanics to charge transport in carbon nanotube mechanical resonators. Science 325:1107–1110

    Article  Google Scholar 

  25. Moser J, Guttinger J, Eichler A, Esplandiu MJ, Liu DE, Dykman MI, Bachtold A (2013) Ultrasensitive force detection with a nanotube mechanical resonator. Nat Nanotechnol 8:493–496

    Article  Google Scholar 

  26. Chaste J, Eichler A, Moser J, Ceballos G, Rurali R, Bachtold A (2012) A nanomechanical mass sensor with yoctogram resolution. Nat Nanotechnol 7:300–303

    Article  Google Scholar 

  27. Fukami S, Arie T, Akita S (2009) Effect of gaseous dissipation of oscillating cantilevered carbon nanotubes. Jpn J Appl Phys 48:06FG04

    Google Scholar 

  28. Akita S, Arie T (2009) Carbon nanotube mechanical resonators for mass sensing. Sensor Mater 21:339–349

    Google Scholar 

  29. Sawano S, Arie T, Akita S (2010) Carbon nanotube resonator in liquid. Nano Lett 10:3395–3398

    Article  Google Scholar 

  30. Yamamoto K, Akita S, Nakayama Y (1998) Orientation and purification of carbon nanotubes using ac electrophoresis. J Phys D Appl Phys 31:L34–L36

    Article  Google Scholar 

  31. Yoshinaka A, Arie T, Akita S (2011) Sustained mechanical self-oscillation of carbon nanotube cantilever by phase locked loop with optomechanical heterodyne. Appl Phys Lett 98:133103

    Article  Google Scholar 

  32. Garcia R, Perez R (2002) Dynamic atomic force microscopy methods. Surf Sci Rep 47:197–301

    Article  MATH  Google Scholar 

  33. Wiesendanger R (1994) Scanning probe microscopy and spectroscopy. Cambridge University Press, Cambridge

    Book  Google Scholar 

  34. Albrecht TR, Grutter P, Horne D, Rugar D (1991) Frequency-modulation detection using high-Q cantilevers for enhanced force microscope sensitivity. J Appl Phys 69:668–673

    Article  Google Scholar 

  35. Hiroshima S, Yoshinaka A, Arie T, Akita S (2013) Photothermal actuation of cantilevered multiwall carbon nanotubes with bimaterial configuration toward calorimeter. Jpn J Appl Phys 52:06GH02

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seiji Akita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Akita, S. (2015). Nanomechanical Application of CNT. In: Matsumoto, K. (eds) Frontiers of Graphene and Carbon Nanotubes. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55372-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55372-4_14

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55371-7

  • Online ISBN: 978-4-431-55372-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics