Skip to main content

Hotspots and Mantle Plumes

  • Chapter
  • First Online:

Part of the book series: Springer Geophysics ((SPRINGERGEOPHYS))

Abstract

Seismic images under 62 possible hotspots are reviewed for understanding the origin of hotspots and mantle plumes. Plume-like, continuous low-velocity anomalies are visible beneath Hawaii, Tahiti, Louisville, Iceland, Cape Verde, Reunion, Kerguelen, Amsterdam, Afar, Eifel, Hainan, Yellowstone and Cobb hotspots, suggesting that they may be 13 whole-mantle plumes originating from the core-mantle boundary. These plumes exhibit tilted images, suggesting that plumes are not fixed in the mantle but can be deflected by the mantle flow. Upper-mantle plumes seem to exist beneath Cameroon, Easter, Azores, Vema, East Australia and Erebus hotspots. A mid-mantle plume may exist under the San Felix hotspot. Active intraplate volcanoes in Northeast Asia and Southwest China are caused by hot and wet upwelling flows in the big mantle wedge above the stagnant slab in the mantle transition zone. Although low-velocity zones appear at some depth under other hotspots, their plume features are not clear. The complex images under hotspots reflect strong lateral variations in temperature, viscosity and possibly composition of the mantle, which control the generation and ascent of mantle plumes and the flow pattern of mantle convection.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Albers, M., Christensen, U.: The excess temperature of plumes rising from the core-mantle boundary. Geophys. Res. Lett. 23, 3567–3570 (1996)

    Google Scholar 

  • Allen, R., Nolet, G., Morgan, W., Vogfjord, K., Bergsson, B., Erlendsson, P. et al.: Imaging the mantle beneath Iceland using integrated seismological techniques. J. Geophys. Res. (2002). doi: 10.1019/2001JB000595

    Google Scholar 

  • Anderson, D.L.: Chemical plumes in the mantle. Geol. Soc. Am. Bull. 86, 1593–1600 (1975)

    Google Scholar 

  • Anderson, D.L.: The thermal state of the upper mantle: no role for mantle plumes. Geophys. Res. Lett. 27, 3623–3626 (2000)

    Google Scholar 

  • Anderson, D.L.: Hawaii, boundary layers and ambient mantle—geophysical constraints. J. Petrol. 52, 1547–1577 (2011)

    Google Scholar 

  • Ballmer, M., Ito, G., Wolfe, C., Solomon, S.: Double layering of a thermochemical plume in the upper mantle beneath Hawaii. Earth Planet. Sci. Lett. 376, 155–164 (2013)

    Google Scholar 

  • Bastow, I., Stuart, G., Kendall, J., Ebinger, C.: Upper-mantle seismic structure in a region of incipient continental breakup: northern Ethiopian rift. Geophys. J. Int. 162, 479–493 (2005)

    Google Scholar 

  • Becker, T.: On recent seismic tomography for the western United States. Geochem. Geophys. Geosyst. 13, Q01W10 (2012)

    Google Scholar 

  • Benoit, M., Nyblade, A., VanDecar, J.: Upper mantle P-wave speed variations beneath Ethiopia and the origin of the Afar hotspot. Geology 34, 329–332 (2006)

    Google Scholar 

  • Bijwaard, H., Spakman, W.: Tomographic evidence for a narrow whole mantle plume below Iceland. Earth Planet. Sci. Lett. 166, 121–126 (1999)

    Google Scholar 

  • Bina, C., Helffrich, G.: Phase transition Clapeyron slopes and transition zone seismic discontinuity. J. Geophys. Res. 99, 15853–15860 (1994)

    Google Scholar 

  • Boehler, R.: Temperatures in the Earth’s core from melting point measurements of iron at high static pressures. Nature 363, 534–536 (1993)

    Google Scholar 

  • Boschi, L., Becker, T., Steinberger, B.: Mantle plumes: dynamical models and seismic images. Geochem. Geophys. Geosyst. 8, Q10006 (2007)

    Google Scholar 

  • Bossmann, A., van Keken, P.: Dynamics of plumes in a compressible mantle with phase changes: Implications for phase boundary topography. Phys. Earth Planet. Inter. 224, 21–31 (2013)

    Google Scholar 

  • Brandt, M: Middle mantle seismic structure of the African superplume. Pure Appl. Geophys. 170, 845–861 (2013)

    Google Scholar 

  • Breton, T., Nauret, F., Pichat, S., Moine, B. et al.: Geochemical heterogeneities within the Crozet hotspot. Earth Planet. Sci. Lett. 376, 126–136 (2013)

    Google Scholar 

  • Budweg, M., Bock, G., Weber, M.: The Eifel plume—imaged with converted seismic waves. Geophys. J. Int. 166, 579–589 (2006)

    Google Scholar 

  • Campbell, I.: Testing the plume theory. Chem. Geol. 241, 153–176 (2007)

    Google Scholar 

  • Chang, S., Van der Lee, S.: Mantle plumes and associated flow beneath Arabia and East Africa. Earth Planet. Sci. Lett. 302, 448–454 (2011)

    Google Scholar 

  • Coffin, M., Pringle, M., Duncan, R., Gladczenko, T.: Kerguelen hotspot magma output since 130 Ma. J. Petrol. 43, 1121–1139 (2002)

    Google Scholar 

  • Condie, K.: Mantle Plumes And Their Record In Earth History. pp. 306. Cambridge University Press, Cambridge (2001)

    Google Scholar 

  • Courtier, A., Jackson, M., Lawrence, J., Wang, Z., Lee, C. et al.: Correlation of seismic and petrologic thermometers suggests deep thermal anomalies beneath hotspots. Earth Planet. Sci. Lett. 264, 308–316 (2007)

    Google Scholar 

  • Courtillot, V., Davaille, A., Besse, J., Stock, J.: Three distinct types of hotspots in the Earth’s mantle. Earth Planet. Sci. Lett. 205, 295–308 (2003)

    Google Scholar 

  • Crough, S., Jurdy, D.: Subducted lithosphere, hotspots, and the geoid. Earth Planet. Sci. Lett. 48, 15–22 (1980)

    Google Scholar 

  • Cserepes, L., Yuen, D.: On the possibility of a second kind of mantle plume. Earth Planet. Sci. Lett. 183, 61–71 (2000)

    Google Scholar 

  • Davies, G.F.: Ocean bathymetry and mantle convection: 1. Large-scale flow and hotspots. J. Geophys. Res. 93, 10467–10480 (1988)

    Google Scholar 

  • Davies, D., Goes, S., Davies, J., Schuberth, B., Bunge, H., Ritsema, J.: Reconciling dynamic and seismic models of Earth’s lower mantle: the dominant role of thermal heterogeneity. Earth Planet. Sci. Lett. 353, 253–269 (2012)

    Google Scholar 

  • Deuss, A.: Seismic observations of transition-zone discontinuities beneath hotspot locations. In: Foulger, G., Jurdy, D. (eds.) Plates, Plumes, and Planetary Processes, pp. 121–136. Special Paper 430, Geological Society of America (2007)

    Google Scholar 

  • Druken, K., Kincaid, C., Griffiths, R.: Directions of seismic anisotropy in laboratory models of mantle plumes. Geophys. Res. Lett. 40, 3544–3549 (2013)

    Google Scholar 

  • Du, J., Liu, C., Fu, B., Ninomiya, Y., Zhang, Y.: Variation of geothermometry and chemical-isotopic compositions of hot spring fluids in the Rehai geothermal field, Southwestern China. J. Volcanol. Geotherm. Res. 142, 243–261 (2005)

    Google Scholar 

  • Duan, Y., Zhao, D., Zhang, X. et al.: Seismic structure and origin of active intraplate volcanoes in Northeast Asia. Tectonophysics. 470, 257–266 (2009)

    Google Scholar 

  • Dunn, R., Forsyth, D.: Crust and lithospheric structure—Seismic structure of mid-ocean ridges. In: Schubert, G. (ed.) Treatise in Geophysics, Vol. 1.12, pp. 419–443. Elsevier, New York (2007)

    Google Scholar 

  • Ernst, W.: Speculations on evolution of the terrestrial lithosphere-asthenosphere system—plumes and plates. Gondwana Res. 11, 38–49 (2007)

    Google Scholar 

  • Farnetani, C.: Excess temperature of mantle plumes: the role of chemical stratification across D”. Geophys. Res. Lett. 24, 1583–1586 (1997)

    Google Scholar 

  • Farnetani, C., Hofmann, A.: Dynamics and internal structure of a lower mantle plume conduit. Earth Planet. Sci. Lett. 282, 314–322 (2009)

    Google Scholar 

  • Farnetani, C., Hofmann, A.: Dynamics and internal structure of the Hawaiian plume. Earth Planet. Sci. Lett. 295, 231–240 (2010)

    Google Scholar 

  • Foulger, G., Jurdy, D. (eds): Plates, Plumes, and Planetary Processes. Special Paper 430, Geological Society of America (2007)

    Google Scholar 

  • Foulger, G., Pritchard, M., Julian, B., Evans, J.: The seismic anomaly beneath Iceland extends down to the mantle transition zone and no deeper. Geophys. J. Int. 142, F1-F5 (2000)

    Google Scholar 

  • Goes, S., Spakman, W., Bijwaard, H.: A lower mantle source for central European volcanism. Science 286, 1928–1931 (1999)

    Google Scholar 

  • Griffiths, R., Richards, M.: The adjustment of mantle plumes to changes in plate motion. Geophys. Res. Lett. 16, 437–440 (1989)

    Google Scholar 

  • Gupta, S., Zhao, D., Rai, S.: Seismic imaging of the upper mantle under the Erebus hotspot in Antarctica. Gondwana Res. 16, 109–118 (2009)

    Google Scholar 

  • Haldar, C., Kumar, P., Ravi Kumar, M.: Seismic structure of the lithosphere and upper mantle beneath the ocean islands near mid-oceanic ridges. Solid Earth 5, 327–337 (2014)

    Google Scholar 

  • Hansen, S., Nyblade, A., Benoit, M.: Mantle structure beneath Africa and Arabia from adaptively parameterized P-wave tomography: implications for the origin of Cenozoic Afro-Arabian tectonism. Earth Planet. Sci. Lett. 319, 23–34 (2012)

    Google Scholar 

  • Helffrich, G.: Topography of the transition zone seismic discontinuities. Rev. Geophys. 38, 141–158 (2000)

    Google Scholar 

  • Helffrich, G., Faria, B., Fonseca, J., Lodge, A., Kaneshima, S.: Transition zone structure under a stationary hot spot: cape verde. Earth Planet. Sci. Lett. 289, 156–161 (2010)

    Google Scholar 

  • Helmberger, D., Wen, L., Ding, X.: Seismic evidence that the source of the Iceland hotspot lies at the core-mantle boundary. Nature 396, 251–258 (1998)

    Google Scholar 

  • Hilton, D., Halldorsson, S., Barry, P., Fischer, T. et al.: Helium isotopes at Rungwe Volcanic Province, Tanzania, and the origin of East African Plateaux. Geophys. Res. Lett. 38, L21304 (2011)

    Google Scholar 

  • Hooft, E., Toomey, D., Solomon, S.: 2003. Anomalously thin transition zone beneath the Galapagos hotspot. Earth Planet. Sci. Lett. 216, 55–64 (2003)

    Google Scholar 

  • Huang, J., Zhao, D.: High-resolution mantle tomography of China and surrounding regions. J. Geophys. Res. 111, B09305 (2006)

    Google Scholar 

  • Huang, J., Zhao, D., Zheng, S.: Lithospheric structure and its relationship to seismic and volcanic activity in southwest China. J. Geophys. Res. 107, 2000JB000137 (2002)

    Google Scholar 

  • Huang, S., Hall, P., Jackson, M.: Geochemical zoning of volcanic chains associated with Pacific hotspots. Nature Geosci. 4, 874–878 (2011)

    Google Scholar 

  • Huang, Z., Zhao, D., Hasegawa, A., Umino, N., Park, J., Kang, I.: Aseismic deep subduction of the Philippine Sea plate and slab window. J. Asian Earth Sci. 75, 82–94 (2013)

    Google Scholar 

  • Huckfeldt, M., Courtier, A., Leahy, G.: Implications for the origin of Hawaiian volcanism from a converted wave analysis of the mantle transition zone. Earth Planet. Sci. Lett. 373, 194–204 (2013)

    Google Scholar 

  • Huerta, A., Nyblade, A., Reusch, A.: Mantle transition zone structure beneath Kenya and Tanzania: more evidence for a deep-seated thermal upwelling in the mantle. Geophys. J. Int. 177, 1249–1255 (2009)

    Google Scholar 

  • Humphreys, E., Schmandt, B.: Looking for mantle plumes. Phys. Today. 64(8), 34–39 (2011)

    Google Scholar 

  • Hung, S., Shen Y., Chiao, L.: Imaging seismic velocity structure beneath the Iceland hot spot: a finite frequency approach. J. Geophys. Res. 109, B08305 (2004)

    Google Scholar 

  • Hwang, Y., Ritsema, J., van KeKen, P., Goes, S.: Wavefront healing renders deep plumes seismically invisible. Geophys. J. Int. 187, 273–277 (2011)

    Google Scholar 

  • Ito, E., Takahashi, E.: Postspinel transformations in the system Mg2SiO4-Fe2SiO4 and some geophysical implications. J. Geophys. Res. 94, 10637–10646 (1989)

    Google Scholar 

  • Ito, G., van Keken, P.: Hot spots and melting anomalies. In: Schubert, G. (ed.) Treatise in Geophysics, Vol. 7, pp. 371–435. Elsevier, New York (2007)

    Google Scholar 

  • Jackson, M., Hart, S., Konter, J., Koppers, A. et al.: Samoan hot spot track on a “hot spot highway”: implications for mantle plumes and a deep Samoan mantle source. Geochem. Geophys. Geosyst. 11, Q12009 (2010)

    Google Scholar 

  • Jakovlev, A., Rumpker, G., Schmeling, H., Koulakov, I., Lindenfeld, M., Wallner, H.: Seismic images of magmatic rifting beneath the western branch of the East African rift. Geochem. Geophys. Geosyst. 14, 4906–4920 (2013)

    Google Scholar 

  • Ji, Y., Nataf, H.: Detection of mantle plumes in the lower mantle by diffraction tomography: Hawaii. Earth Planet. Sci. Lett. 159, 99–115 (1998)

    Google Scholar 

  • Keyser, M., Ritter, J., Jordan, M.: 3D shear-wave velocity structure of the Eifel plume, Germany. Earth Planet. Sci. Lett. 203, 59–82 (2002)

    Google Scholar 

  • Kido, M., Cadek, O.: Inferences of viscosity from the oceanic geoid: Indication of a low viscosity zone below the 660-km discontinuity. Earth Planet. Sci. Lett. 151, 125–137 (1997)

    Google Scholar 

  • Kincaid, C., Druken, K., Griffiths, R., Stegman, D.: Bifurcation of the Yellowstone plume driven by subduction-induced mantle flow. Nature Geosci. 6, 395–399 (2013)

    Google Scholar 

  • King, S., Ritsema, J.: African hot spot volcanism: small-scale convection in the upper mantle beneath cratons. Science 290, 1137–1140 (2000)

    Google Scholar 

  • Kobayashi, R., Zhao, D.: Rayleigh wave group velocity distribution in the Antarctic region. Phys. Earth Planet. Inter. 141, 167–181 (2004)

    Google Scholar 

  • Konter, J., Jackson, M.: Large volumes of rejuvenated volcanism in Samoa: evidence supporting a tectonic influence on late-stage volcanism. Geochem. Geophys. Geosyst. 14, Q0AM04 (2012)

    Google Scholar 

  • Koulakov, I., Bushenkova, N.: Upper mantle structure beneath the Siberian craton and surrounding areas based on regional tomographic inversion of P and PP travel times. Tectonophysics. 486, 81–100 (2010)

    Google Scholar 

  • Kumagai, I., Davaille, A., Kurita, K., Stutzmann, E.: Mantle plumes: thin, fat, successful, or failing? Constraints to explain hot spot volcanism through time and space. Geophys. Res. Lett. 35, L16301 (2008)

    Google Scholar 

  • Kuritani, T., Ohtani, E., Kimura, J.: Intensive hydration of the mantle transition zone beneath China caused by ancient slab stagnation. Nature Geosci. 4, 713–716 (2011)

    Google Scholar 

  • Kuritani, T., Kimura, J., Ohtani, E., Miyamoto, H., Furuyama, K.: Transition zone origin of potassic basalts from Wudalianchi volcano, northeast China. Lithos 156, 1–12 (2013)

    Google Scholar 

  • Lambeck, K., Johnston, P., Smither, C., Nakada, M.: Glacial rebound of the British Isles III. Constraints on mantle viscosity. Geophys. J. Int. 125, 340–354 (1996)

    Google Scholar 

  • Lawrence, J., Shearer, P.: A global study of transition zone thickness using receiver functions. J. Geophys. Res. 111, B06307 (2006)

    Google Scholar 

  • Lay, T., Helmberger, D.: A lower mantle S wave triplication and the shear velocity structure of D”. Geophys. J. R. Astron. Soc. 75, 799–837 (1983)

    Google Scholar 

  • Lay, T., Garnero, E., Williams, Q.: Partial melting in a thermo-chemical boundary layer at the base of the mantle. Phys. Earth Planet. Inter. 146, 441–467 (2004)

    Google Scholar 

  • Lebedev, S., Nolet, G.: Upper mantle beneath Southeast Asia from S velocity tomography. J. Geophys. Res. 108, 2000JB000073 (2003)

    Google Scholar 

  • Lei, J., Zhao, D.: P-wave tomography and origin of the Changbai intraplate volcano in Northeast Asia. Tectonophysics 397, 281–295 (2005)

    Google Scholar 

  • Lei, J., Zhao, D.: A new insight into the Hawaiian plume. Earth Planet. Sci. Lett. 241, 438–453 (2006)

    Google Scholar 

  • Lei, J., Zhao, D., Su, Y.: Insight into the origin of the Tengchong intraplate volcano and seismotectonics in southwest China from local and teleseismic data. J. Geophys. Res. 114, B05302 (2009a)

    Google Scholar 

  • Lei, J., Zhao, D., Steinberger, B., Wu, B., Shen, F., Li, Z.: New seismic constraints on the upper mantle structure of the Hainan plume. Phys. Earth Planet. Inter. 173, 33–50 (2009b)

    Google Scholar 

  • Leng, W., Gurnis, M.: Shape of thermal plumes in a compressible mantle with depth-dependent viscosity. Geophys. Res. Lett. 39, L05310 (2012)

    Google Scholar 

  • Li, X., Kind, R., Priestley, K., Sobolev, S., Tilmann, F., Yuan, X., Weber, M.: Mapping the Hawaiian plume conduit with converted seismic waves. Nature 405, 938–941 (2000)

    Google Scholar 

  • Li, X., Kind, R., Yuan, X.: Seismic study of upper mantle and transition zone beneath hotspots. Phys. Earth Planet. Inter. 136, 79–92 (2003)

    Google Scholar 

  • Liu, J.: Chinese Volcanoes. Scientific, Beijing, pp. 219 (1999)

    Google Scholar 

  • Liu, R.: Active Volcanoes in China. Seismological Publishing, pp. 114 (2000)

    Google Scholar 

  • Liu, K., Gao, S.: Mantle transition zone discontinuities beneath the Baikal rift and adjacent area. J. Geophys. Res. 111, B11301 (2006)

    Google Scholar 

  • Liu, X., Zhao, D.: Seismic evidence for a mantle plume beneath the Cape Verde hotspot. Int. Geol. Rev. 56, 1213–1225 (2014)

    Google Scholar 

  • Lodge, A., Helffrich, G.: Depleted swell root beneath the Cape Verde islands. Geology 34, 449–452 (2006)

    Google Scholar 

  • Lodge, A., Nippress, S., Rietbrock, A., Garcia-Yeguas, A., Ibanez, J.: Evidence for magmatic underplating and partial melt beneath Canary Islands derived using teleseismic receiver functions. Phys. Earth Planet. Inter. 212, 44–54 (2012)

    Google Scholar 

  • Loper, D.: Mantle plumes. Tectonophysics. 187, 373–384 (1991)

    Google Scholar 

  • Martinez-Arevalo, C., Mancilla, F., Helffrich, G., Garcia, A.: Seismic evidence of a regional sublithospheric low velocity layer beneath the Canary Islands. Tectonophysics. 608, 586–599 (2013)

    Google Scholar 

  • Maruyama, S.: Plume tectonics. J. Geol. Soc. Japan 100, 24–49 (1994)

    Google Scholar 

  • Maruyama, S., Santosh, M., Zhao, D.: Superplume, supercontinent, and post-perovskite: Mantle dynamics and anti-plate tectonics on the core-mantle boundary. Gondwana Res. 11, 7–37 (2007)

    Google Scholar 

  • Mathar, J., Ritter, J., Friederich, W.: Surface waves image the top of the Eifel plume. Geophys. J. Int. 164, 377–382 (2006)

    Google Scholar 

  • McKenzie, D.: The generation and compaction of partial molten rocks. J. Petrol. 25, 713–765 (1984)

    Google Scholar 

  • McNutt, M.: Superswells. Rev. Geophys. 36, 211–244 (1998)

    Google Scholar 

  • McNutt, M., Caress, D.: Crust and lithospheric structure—Hot spots and hot-spot swells. In: Schubert, G. (ed.) Treatise in Geophysics, Vol. 1, pp. 445–478. Elsevier, New York (2007).

    Google Scholar 

  • Molnar, P., Stock, J.: Relative motions of hotspots in the Pacific, Atlantic, and India oceans since late Cretaceous time. Nature 327, 587–591 (1987)

    Google Scholar 

  • Montelli, R., Nolet, G., Dahlen, F., Master, G.: A catalogue of deep mantle plumes: new results from finite-frequency tomography. Geochem. Geophys. Geosyst. 7, Q11007 (2006)

    Google Scholar 

  • Morgan, W.: Convection plumes in the lower mantle. Nature. 230, 42–43 (1971)

    Google Scholar 

  • Morgan, W.: Deep motions and deep mantle convection. Geol. Soc. Am. Memo. 132, 7–22 (1972)

    Google Scholar 

  • Mulibo, G., Nyblade, A.: The P and S wave velocity structure of the mantle beneath eastern Africa and the African superplume anomaly. Geochem. Geophys. Geosyst. 14, 2696–2715 (2013)

    Google Scholar 

  • Murakami, M., Hirose, K., Kawamura, K., Sata, K., Ohishi, Y.: Postperovskite phase transition in MgSiO3. Science. 304, 855–858 (2004)

    Google Scholar 

  • Nataf, H.: Seismic imaging of mantle plumes. Ann. Rev. Earth Planet. Sci. 28, 391–417 (2000)

    Google Scholar 

  • Nataf, H., VanDecar, J.: Seismological detection of a mantle plume? Nature. 364, 115–120 (1993)

    Google Scholar 

  • Nataf, H., Ricard, Y.: 3SMAC: an a priori tomographic model of the upper mantle based on geophysical modeling. Phys. Earth Planet. Inter. 95, 101–122 (1996)

    Google Scholar 

  • Newmann, E.: The Oslo Rift: P-T relations and lithospheric structure. Tectonophysics. 240, 159–172 (1994)

    Google Scholar 

  • Niu, F., Inoue, H.: Seismic evidence for a thinner mantle transition zone beneath the South Pacific Superswell. Geophys. Res. Lett. 27, 1981–1984 (2000)

    Google Scholar 

  • Nolet, G., Allen, R., Zhao, D.: Mantle plume tomography. Chem. Geol. 241, 248–263 (2007)

    Google Scholar 

  • Nyblade, A., Owens, T., Gurrola, H., Ritsema, J., Langston, C.: Seismic evidence for a deep upper mantle thermal anomaly beneath east Africa. Geology. 28, 599–602 (2000)

    Google Scholar 

  • O’Connor, J., Steinberger, B., Regelous, M., Koppers, A. et al.: Constraints on past plate and mantle motion from new ages for the Hawaiian-Emperor seamount chain. Geochem. Geophys. Geosyst. (2013). doi: 10.1002/ggge.20267

    Google Scholar 

  • Ohtani, E., Zhao, D.: The role of water in the deep upper mantle and transition zone: dehydration of stagnant slabs and its effects on the big mantle wedge. Russ. Geol. Geophys. 50, 1073–1078 (2009)

    Google Scholar 

  • Olson, P., Singer, H.: Creeping plumes. J. Fluid Mech. 158, 511–531 (1985)

    Google Scholar 

  • Pietruszka, A., Norman, M., Garcia, M., Marske, J., Burns, D.: Chemical heterogeneity in the Hawaiian mantle plume from the alteration and dehydration of recycled oceanic crust. Earth Planet. Sci. Lett. 361, 298–309 (2013)

    Google Scholar 

  • Pim, J., Peirce, C., Watts, A., Grevemeyer, I., Krabbenhoeft, A.: Crustal structure and origin of the Cape Verde Rise. Earth Planet. Sci. Lett. 272, 422–428 (2008)

    Google Scholar 

  • Radziminovich, N., Gileva, N., Melnikova, V., Ochkovskaya, M.: Seismicity of the Baikal rift system from regional network observations. J. Asian Earth Sci. 62, 146–161 (2013)

    Google Scholar 

  • Represas, P., Catalao, J., Montesinos, F., Madeira, J., Mata, J., Antunes, C., Moreira, M.: Constraints on the structure of Maio Island (Cape Verde) by a three-dimensional gravity model: imaging partially exhumed magma chambers. Geophys. J. Int. 190, 931–940 (2012)

    Google Scholar 

  • Reusch, A., Nyblade, A., Wiens, D., Shore, P., Ateba, B., Tabod, C., Nnange, J.: Upper mantle structure beneath Cameroon from body wave tomography and the origin of the Cameroon Volcanic Line. Geochem. Geophys. Geosyst. 11, Q10W07 (2010)

    Google Scholar 

  • Reusch, A., Nyblade, A., Tibi, R., Wiens, D., Shore, P., Ateba, B., Tabod, C., Nnange, J.: Mantle transition zone thickness beneath Cameroon: evidence for an upper mantle origin for the Cameroon Volcanic Line. Geophys. J. Int. 187, 1146–1150 (2011)

    Google Scholar 

  • Ricard, Y., Vigny, C., Froidevaux, C.: Mantle heterogeneities, geiod and plate motions: a Monte-Carlo inversion. J. Geophys. Res. 94, 13739–13754 (1989)

    Google Scholar 

  • Richards, M., Hager, B.: Geoid anomalies in a dynamic Earth. J. Geophys. Res. 89, 5987–6002 (1984)

    Google Scholar 

  • Richards, M., Griffiths, R.: Deflection of plumes by mantle shear flow: experimental results and a simple theory. Geophys. J. Int. 94, 367–376 (1988)

    Google Scholar 

  • Richards, M., Hager, B., Sleep, N.: Dynamically supported geoid highs over hotspots: observation and theory. J. Geophys. Res. 93, 7690–7708 (1988)

    Google Scholar 

  • Rickers, F., Fichtner, A., Trampert, J.: The Iceland-Jan Mayen plume system and its impact on mantle dynamics in the North Atlantic region: evidence from full-waveform inversion. Earth Planet. Sci. Lett. 367, 39–51 (2013)

    Google Scholar 

  • Ritsema, J., Jan der Heijst, H., Woodhouse, J.: Complex shear wave velocity structure imaged beneath Africa and Iceland. Science. 286, 1925–1928 (1999)

    Google Scholar 

  • Ritter, J.: The seismic signature of the Eifel plume. In: Ritter, J., Christensen, U. (eds.) Mantle Plumes: A Multidisciplinary Approach, pp. 379–404. Springer (2007)

    Google Scholar 

  • Ritter, J., Jordan, M., Christensen, U., Achauer, U.: A mantle plume below the Eifel volcanic field, Germany. Earth Planet. Sci. Lett. 186, 7–14 (2001)

    Google Scholar 

  • Rychert, C., Laske, G., Harmon, N., Shearer, P.: Seismic imaging of melt in a displaced Hawaiian plume. Nature Geosci. 6, 657–660 (2013)

    Google Scholar 

  • Rychert, C., Harmon, N., Ebinger, C.: Receiver function imaging of lithospheric structure and the onset of melting beneath the Galapagos Archipelago. Earth Planet. Sci. Lett. 388, 156–165 (2014)

    Google Scholar 

  • Saltzer, R., Humphreys, E.: Upper mantle P wave velocity structure of the eastern Snake River Plain and its relationship to geodynamic models of the region. J. Geophys. Res. 102, 11829–11841 (1997)

    Google Scholar 

  • Schilling, J.G.: Fluxes and excess temperatures of mantle plumes inferred from their interaction with migrating mid-ocean ridges. Nature 352, 397–403 (1991)

    Google Scholar 

  • Schmandt, B., Dueker, K., Humphreys, E., Hansen, S.: Hot mantle upwelling across the 660 beneath yellowstone. Earth Planet. Sci. Lett. 331, 224–236 (2012)

    Google Scholar 

  • Shen, Y., Solomon, S., Bjarnason, I., Nolet, G.: Seismic evidence for a tilted mantle plume and north-south mantle flow beneath Iceland. Earth Planet. Sci. Lett. 197, 261–272 (2002)

    Google Scholar 

  • Shimoda, G., Ishizuka, O., Yamashita, K. et al.: Tectonic influence on chemical composition of ocean island basalts in the West and South Pacific: Implications for a deep mantle origin. Geochem. Geophys. Geosyst. 12, Q07020 (2011)

    Google Scholar 

  • Sidorin, I., Gurnis, M., Helmberger, D.: Dynamics of a phase change at the base of the mantle consistent with seismological observations. J. Geophys. Res. 104, 15005–15023 (1999)

    Google Scholar 

  • Silveira, G., Stutzmann, E., Davaille, A., Montagner, J.: Azores hotspot signature in the upper mantle. J. Volcanol. Geotherm. Res. 156, 23–34 (2006)

    Google Scholar 

  • Silveira, G., Vinnik, L., Stutzmann, E., Farra, V., Kiselev, S., Morais, I.: Stratification of the Earth beneath the Azores from P and S receiver functions. Earth Planet. Sci. Lett. 299, 91–103 (2010)

    Google Scholar 

  • Sleep, N.: Hotspots and mantle plumes: some phenomenology. J. Geophys. Res. 95, 6715–6736 (1990)

    Google Scholar 

  • Sleep, N.: Mantle plumes from top to bottom. Earth Sci. Rev. 77, 231–271 (2006)

    Google Scholar 

  • Steinberger, B.: Plumes in a convecting mantle: models and observations for individual hotspots. J. Geophys. Res. 105, 11127–11152 (2000)

    Google Scholar 

  • Steinberger, B., Gaina, C.: Plate-tectonic reconstructions predict part of the Hawaiian hotspot track to be preserved in the Bering Sea. Geology. 35, 407–410 (2007)

    Google Scholar 

  • Stern, R.: Subduction zones. Rev. Geophys. 40, RG000108 (2002)

    Google Scholar 

  • Storey, B.: The role of mantle plumes in continental breakup: case histories from Gondwana. Nature. 377, 301–308 (1995)

    Google Scholar 

  • Styles, E., Goes, S., van KeKen, P., Ritsema, J., Smith, H.: Synthetic images of dynamically predicted plumes and comparison with a global tomographic model. Earth Planet. Sci. Lett. 311, 351–363 (2011)

    Google Scholar 

  • Suetsugu, D., Isse, T., Tanaka, S., Obayashi, M., Shiobara, H.: South Pacific mantle plumes imaged by seismic observation on islands and seafloor. Geochem. Geophys. Geosyst. 10, Q11014 (2009)

    Google Scholar 

  • Tanaka, S., Obayashi, M., Suetsugu, D., Shiobara, H.: P wave tomography of the mantle beneath the South Pacific Superswell revealed by joint ocean and island broadband seismic experiments. Phys. Earth Planet. Inter. 172, 268–277 (2009a)

    Google Scholar 

  • Tanaka, S., Suetsugu, D., Shiobara, H., Sugioka, H.: On the vertical extent of the large low shear velocity province beneath the South Pacific Superswell. Geophys. Res. Lett. 36, L07305 (2009b)

    Google Scholar 

  • Tarduno, J., Duncan, R., Scholl, D., Cottreal, R., Steinberger, B.: The Emperor seamounts: southward motion of the Hawaiian hotspot plume in Earth’s mantle. Science 301, 1064–1069 (2003)

    Google Scholar 

  • Tarduno, J., Bunge, H., Sleep, N., Hansen, U.: The bent Hawaiian-Emperor hotspot track: Inheriting the mantle wind. Science 324, 50–53 (2009)

    Google Scholar 

  • Tauzin, B., Debayle, E., Wittlinger, G.: The mantle transition zone as seen by global Pds phases: no clear evidence for a thin transition zone beneath hotspots. J. Geophys. Res. 113, B08309 (2008)

    Google Scholar 

  • Tian, Y., Zhao, D.: P-wave tomography of the Western United States: insight into the Yellowstone hotspot and the Juan de Fuca slab. Phys. Earth Planet. Inter. 200, 72–84 (2012)

    Google Scholar 

  • Tosi, N., Yuen, D.: Bent-shaped plumes and horizontal channel flow beneath the 660 km discontinuity. Earth Planet. Sci. Lett. 312, 348–359 (2011)

    Google Scholar 

  • Van Keken, P., Davaille, A., Vatteville, J.: Dynamics of a laminar plume in a cavity: the influence of boundaries on the steady state stem structure. Geochem. Geophys. Geosyst. 14, 158–178 (2013)

    Google Scholar 

  • Villagomez, D., Toomey, D., Geist, D., Hooft, E., Solomon, S.: Mantle flow and multistage melting beneath the Galapagos hotspot revealed by seismic imaging. Nature Geosci. 7, 151–156 (2014)

    Google Scholar 

  • Vinnik, L., Silveira, G., Kiselev, S., Farra, V., Weber, M., Stutzmann, E.: Cape Verde hotspot from the upper crust to the top of the lower mantle. Earth Planet. Sci. Lett. 319, 259–268 (2012)

    Google Scholar 

  • Vogt, P.: On the applicability of thermal conduction models to mid-plate volcanism, comments on a paper by Gass et al. J. Geophys. Res. 86, 950–960 (1981)

    Google Scholar 

  • Vogt, P., Jung, W.: Origin of the Bermuda volcanoes and the Bermuda Rise: History, observations, models, and puzzles. In: Foulger, G., Jurdy, D. (eds.) Plates, Plumes, and Planetary Processes, pp. 553–591. Special Paper 430, Geological Society of America (2007)

    Google Scholar 

  • Waite, G., Smith, R., Allen, R.: Vp and Vs structure of the Yellowstone hot spot from teleseismic tomography: evidence for an upper mantle plume. J. Geophys. Res. 111, B04303 (2006)

    Google Scholar 

  • Wang, Z., Zhao, D., Wang, J.: Deep structure and seismogenesis of the north-south seismic zone in southwest China. J. Geophys. Res. 115, B12334 (2010)

    Google Scholar 

  • Wang, X., Li, Z., Li, X., Li, J., Xu, Y., Li, X.H.: Identification of an ancient mantle reservoir and young recycled materials in the source region of a young mantle plume: implications for potential linkages between plume and plate tectonics. Earth Planet. Sci. Lett. 377, 248–259 (2013)

    Google Scholar 

  • Watson, S., McKenzie, D.P.: Melt generation by plumes: a study of Hawaiian mechanism. J. Petrol. 32, 501–537 (1991)

    Google Scholar 

  • Watson, T., Nyblade, A., Wiens, D., Anandakrishnan, S., Benoit, M., Shore, P., Voigt, D., VanDecar, J.: P and S velocity structure of the upper mantle beneath the Transantarctic Mountains, East Antarctic craton, and Ross Sea from travel time tomography. Geochem. Geophys. Geosyst. 7, Q07005 (2006)

    Google Scholar 

  • Weber, M., Bock, G., Budweg, M.: Upper mantle structure beneath the Eifel from receiver functions. In: Ritter, J., Christensen, U. (eds.) Mantle Plumes: a Multidisciplinary Approach, pp. 405–415. Springer (2007)

    Google Scholar 

  • Wei, W., Xu, J., Zhao, D., Shi, Y.: East Asia mantle tomography: new insight into plate subduction and intraplate volcanism. J. Asian Earth Sci. 60, 88–103 (2012)

    Google Scholar 

  • Williams, Q., Garnero, E.: Seismic evidence for partial melt at the base of Earth’s mantle. Science. 273, 1528–1530 (1996)

    Google Scholar 

  • Wilson, J.: A possible origin of the Hawaiian islands. Can. J. Phys. 41, 863–870 (1963)

    Google Scholar 

  • Wilson, J.: Mantle plumes and plate motions. Tectonophysics. 19, 149–164 (1973)

    Google Scholar 

  • Wilson, D., Peirce, C., Watts, A., Grevemeyer, I., Krabbenhoeft, A.: Uplift at lithospheric swell—I: seismic and gravity constraints on the crust and uppermost mantle structure of the Cape Verde mid-plate swell. Geophys. J. Int. 182, 531–550 (2010)

    Google Scholar 

  • Wolbern, I., Jacob, A., Blake, T., Kind, R., Li, X.: Deep origin of the Hawaiian tilted plume conduit derived from receiver functions. Geophys. J. Int. 166, 767–781 (2006)

    Google Scholar 

  • Wolfe, C., Bjarnason, I., VanDecar, J., Soloman, S.: Seismic structure of the Iceland mantle plume. Nature. 385, 245–247 (1997)

    Google Scholar 

  • Wolfe, C., Solomon, S., Laske, G., Collins, J., Detrick, R., Orcutt, J., Bercovici, D., Hauri, E.: Mantle shear-wave velocity structure beneath the Hawaiian hotspot. Science. 326, 1388–1390 (2009)

    Google Scholar 

  • Wolfe, C., Solomon, S., Laske, G., Collins, J., Detrick, R., Orcutt, J., Bercovici, D., Hauri, E.: Mapping P-wave velocity structure beneath the Hawaiian hotspot. Earth Planet. Sci. Lett. 303, 267–280 (2011)

    Google Scholar 

  • Yang, T., Shen, Y., van der Lee, S., Soloman, S., Hung, S.: Upper mantle structure beneath the Azores hotspot from finite-frequency seismic tomography. Earth Planet. Sci. Lett. 250, 11–26 (2006)

    Google Scholar 

  • Yang, T., Wu, J., Fang, L., Wang, W.: Complex structure beneath the southeastern Tibetan Plateau from teleseismic P-wave tomography. Bull. Seismol. Soc. Am. 104, 1056–1069 (2014)

    Google Scholar 

  • Zandomeneghi, D., Aster, R., Kyle, P., Barclay, A., Chaput, J., Knox, H.: Internal structure of Erebus volcano, Antarctica imaged by high-resolution active-source seismic tomography and coda interferometry. J. Geophys. Res. 118, 1067–1078 (2013)

    Google Scholar 

  • Zhao, D.: Seismological structure of subduction zones and its implications for arc magmatism and dynamics. Phys. Earth Planet. Inter. 127, 197–214 (2001a)

    Google Scholar 

  • Zhao, D.: Seismic structure and origin of hotspots and mantle plumes. Earth Planet. Sci. Lett. 192, 251–265 (2001b)

    Google Scholar 

  • Zhao, D.: Global tomographic images of mantle plumes and subducting slabs: Insight into deep Earth dynamics. Phys. Earth Planet. Inter. 146, 3–34 (2004)

    Google Scholar 

  • Zhao, D.: Seismic images under 60 hotspots: search for mantle plumes. Gondwana Res. 12, 335–355 (2007)

    Google Scholar 

  • Zhao, D.: Tomography and dynamics of Western-Pacific subduction zones. Monogr. Environ. Earth Planets 1, 1–70 (2012)

    Google Scholar 

  • Zhao, D., Liu, L.: Deep structure and origin of active volcanoes in China. Geosci. Frontiers. 1, 31–44 (2010)

    Google Scholar 

  • Zhao, D., Tian, Y.: Changbai intraplate volcanism and deep earthquakes in East Asia: a possible link? Geophys. J. Int. 195, 706–724 (2013)

    Google Scholar 

  • Zhao, D., Lei, J., Tang, R., 2004. Origin of the Changbai volcano in northeast China: evidence from seismic tomography. Chinese Sci. Bull. 49, 1401–1408 (2004)

    Google Scholar 

  • Zhao, D., Lei, J., Inoue, T., Yamada, A., Gao, S.: Deep structure and origin of the Baikal rift zone. Earth Planet. Sci. Lett. 243, 681–691 (2006)

    Google Scholar 

  • Zhao, D., Maruyama, S., Omori, S.: Mantle dynamics of Western Pacific and East Asia: insight from seismic tomography and mineral physics. Gondwana Res. 11, 120–131 (2007)

    Google Scholar 

  • Zhao, D., Tian, Y., Lei, J., Liu, L., Zheng, S.: Seismic image and origin of the Changbai intraplate volcano in East Asia: role of big mantle wedge above the stagnant Pacific slab. Phys. Earth Planet. Inter. 173, 197–206 (2009)

    Google Scholar 

  • Zhao, D., Yu, S., Ohtani, E.: East Asia: seismotectonics, magmatism and mantle dynamics. J. Asian Earth Sci. 40, 689–709 (2011)

    Google Scholar 

  • Zhao, D., Yamamoto, Y., Yanada, T.: Global mantle heterogeneity and its influence on teleseismic regional tomography. Gondwana Res. 23, 595–616 (2013)

    Google Scholar 

  • Zou, H., Fan, Q., Yao, Y.: U-Th systematics of dispersed young volcanoes in NE China: asthenospheric upwelling caused by piling up and upward thickening of stagnant Pacific slab. Chem. Geol. 255, 134–142 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dapeng Zhao .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Zhao, D. (2015). Hotspots and Mantle Plumes. In: Multiscale Seismic Tomography. Springer Geophysics. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55360-1_5

Download citation

Publish with us

Policies and ethics