Skip to main content

Methodology of Seismic Tomography

  • Chapter
  • First Online:
Multiscale Seismic Tomography

Part of the book series: Springer Geophysics ((SPRINGERGEOPHYS))

Abstract

In this chapter, we first introduce the basic principles of seismic tomography and discuss the common features and differences between seismic tomography and the medical CT-scan. Considering the fact that many different kinds of tomographic studies have been made and a large number of tomography-related technical terms are used in the literature, we present a classification of seismic tomography. Then we explain the meaning of multiscale seismic tomography, and discuss how to interpret the obtained tomographic images. Finally, the scope and contents of this book are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aki, K., Lee, W.: Determination of three-dimensional velocity anomalies under a seismic array using first P arrival times from local earthquakes: 1. A homogeneous initial model. J. Geophys. Res. 81, 4381–4399 (1976)

    Google Scholar 

  • Aki, K., Christoffersson, A., Husehye, E.: Determination of the three-dimensional seismic structure of the lithosphere. J. Geophys. Res. 82, 277–296 (1977)

    Google Scholar 

  • Aster, R., Borchers, B., Thurber, C.: Parameter Estimation and Inverse Problems, p. 301. Elsevier Academic, Burlington (2005)

    Google Scholar 

  • Backus, G.: Possible forms of seismic anisotropy of uppermost mantle under oceans. J. Geophys. Res. 70, 3429–3439 (1965)

    Google Scholar 

  • Backus, G., Gilbert, F.: The resolving power of gross Earth data. Geophys. J.R. Astron. Soc. 16, 169–205 (1968)

    Google Scholar 

  • Ballard, S., Hipp, J., Young, C.: Efficient and accurate calculation of ray theory seismic travel time though variable resolution 3D earth models. Seismol. Res. Lett. 80, 990–1000 (2009)

    Google Scholar 

  • Barclay, A., Toomey, D., Solomon, S.: Seismic structure and crustal magmatism at the Mid-Atlantic Ridge, 35 degrees N. J. Geophys. Res. 103, 17827–17844 (1998)

    Google Scholar 

  • Boschi, L., Becker, T., Soldati, G., Dziewonski, A.: On the relevance of born theory in global seismic tomography. Geophys. Res. Lett. 33, L06302 (2006)

    Google Scholar 

  • Brune, J.: Tectonic stress and the spectra of seismic shear waves from earthquakes. J. Geophys. Res. 75, 4997–5009 (1970)

    Google Scholar 

  • Campillo, M., Paul, A.: Long-range correlations in the diffuse seismic coda. Science 299, 547–549 (2003)

    Google Scholar 

  • Cerveny, V., Molotkov, A., Psencik, I.: Ray Method in Seismology. University of Karlova, Prague (1977)

    Google Scholar 

  • Chou, W., Booker, R.: A Backus-Gilbert approach to inversion of travel-time data for three-dimensional velocity structure. Geophys. J.R. Astron. Soc. 59, 325–344 (1979)

    Google Scholar 

  • Christensen, N.I.: The magnitude, symmetry and origin of upper mantle anisotropy based on fabric analyses of ultramafic tectonites. Geophys. J. R. Astr. Soc. 76, 89–111 (1984)

    Google Scholar 

  • Christensen, N.I.: Poisson’s ratio and crustal seismology. J. Geophys. Res. 101, 3139–3156 (1996)

    Google Scholar 

  • Christensen, N.I.: Serpentinites, peridotites, and seismology. Int. Geol. Rev. 46, 795–816 (2004)

    Google Scholar 

  • Cormier, V.: Seismic attenuation: observation and measurement. In: James, D.E. (ed.) The Encyclopedia of Solid Earth Geophysics, pp. 1005–1017. Van Nostrand Reinhold Company, New York (1989)

    Google Scholar 

  • Coultrip, R.: High-accuracy wavefront tracing traveltime calculation. Geophysics 58, 284–292 (1993)

    Google Scholar 

  • Crampin, S.: Effective anisotropic constants for wave-propagation through cracked solids. Geophys. J. R. Astron. Soc. 76, 135–145 (1984)

    Google Scholar 

  • Deal, M., Nolet, G.: Comment on "Estimation of resolution and covariance for large matrix inversions" by J. Zhang and G. McMechan. Geophys. J. Int. 127, 245–250 (1996)

    Google Scholar 

  • Dziewonski, A.: Mapping the lower mantle: determination of lateral heterogeneity in P velocity up to degree and order 6. J. Geophys. Res. 89, 5929–5952 (1984)

    Google Scholar 

  • Eberhart-Phillips, D.: Three-dimensional velocity structure in Northern California Coast Ranges from inversion of local earthquake arrival times. Bull. Seismol. Soc. Am. 76, 1025–1052 (1986)

    Google Scholar 

  • Eberhart-Phillips, D., Chadwick, M.: Three-dimensional attenuation model of the shallow Hikurangi subduction zone in the Raukumara Peninsula, New Zealand. J. Geophys. Res. 107, 2033 (2002)

    Google Scholar 

  • Eberhart-Phillips, D., Henderson, C.: Including anisotropy in 3-D velocity inversion and application to Marlborough, New Zealand. Geophys. J. Int. 156, 237–254 (2004)

    Google Scholar 

  • Eberhart-Phillips, D., Chadwick, M., Bannister, S.: Three-dimensional attenuation structure of central and southern South Island, New Zealand, from local earthquakes. J. Geophys. Res. 113, B05308 (2008)

    Google Scholar 

  • Engdahl, E., Lee, W.: Relocation of local earthquakes by seismic ray tracing. J. Geophys. Res. 81, 4400–4406 (1976)

    Google Scholar 

  • Fichtner, A., Kennett, B., Igel, H., Bunge, H.: Full waveform tomography for radially anisotropic structure: new insights into present and past states of the Australasian upper mantle. Earth planet. Sci. Lett. 290, 270–280 (2010)

    Google Scholar 

  • Fichtner, A., Trampert, J., Cupillard, P. et al.: Multiscale full waveform inversion. Geophys. J. Int. 194, 534–556 (2013)

    Google Scholar 

  • Fishwick, S.: Gradient maps: A tool in the interpretation of tomographic images. Phys. Earth Planet. Inter. 156, 152–157 (2006)

    Google Scholar 

  • Flanagan, M., Shearer, P.: Global mapping of topography on transition zone velocity discontinuities by stacking SS precursors. J. Geophys. Res. 103, 2673–2692 (1998)

    Google Scholar 

  • Fouch, M., Rondenay, S.: Seismic anisotropy beneath stable continental interiors. Phys. Earth Planet. Inter. 158, 292–320 (2006)

    Google Scholar 

  • Frankel, A., Wennerberg, L.: Microearthquake spectra from the Anza, California, seismic network: Site response and source scaling. Bull. Seismol. Soc. Am. 79, 581–609 (1989)

    Google Scholar 

  • Gupta, S., Zhao, D., Ikeda, M., Ueki, S., Rai, S.: Crustal tomography under the Median Tectonic Line in Southwest Japan using P and PmP data. J. Asian Earth Sci. 35, 377–390 (2009)

    Google Scholar 

  • Hashida, T.: Three-dimensional seismic attenuation structure beneath the Japanese Islands and its tectonic and thermal implications. Tectonophysics 159, 163–180 (1989)

    Google Scholar 

  • Hearn, T.: Anisotropic Pn tomography in the western United States. J. Geophys. Res. 101, 8403–8414 (1996)

    Google Scholar 

  • Herman, G.: Image Reconstruction from Projections: The Fundamentals of Computerized Tomography. Academic Press, San Diego (1980)

    Google Scholar 

  • Hess, H.: Seismic anisotropy of uppermost mantle under oceans. Nature 203, 629–631 (1964)

    Google Scholar 

  • Hirahara, K.: Inversion method of body wave data for three-dimensional Earth structure. J. Seismol. Soc. Japan 43, 291–306 (1990)

    Google Scholar 

  • Horie, A.: Three-dimensional seismic velocity structure beneath the Kanto district by inversion of P-wave arrival times. Ph.D. thesis, University of Tokyo (1980)

    Google Scholar 

  • Horiuchi, S., Ishii, H., Takagi, A.: Two-dimensional depth structure of the crust beneath the Tohoku district, the northeastern Japan arc. I. Method and Conrad discontinuity. J. Phys. Earth 30, 47–69 (1982a)

    Google Scholar 

  • Horiuchi, S., Yamamoto, A., Ueki, S.: Two-dimensional depth structure of the crust beneath the Tohoku district, the northeastern Japan arc. II. Moho discontinuity and P-wave velocity. J. Phys. Earth 30, 71–86 (1982b)

    Google Scholar 

  • Huang, J., Zhao, D.: Crustal heterogeneity and seismotectonics of the region around Beijing, China. Tectonophysics 385, 159–180 (2004)

    Google Scholar 

  • Huang, Z., Zhao, D.: Mechanism of the 2011 Tohoku-oki earthquake (Mw 9.0) and tsunami: insight from seismic tomography. J. Asian Earth Sci. 70, 160–168 (2013)

    Google Scholar 

  • Huang, Z., Zhao, D., Wang, L.: Seismic heterogeneity and anisotropy of the Honshu arc from the Japan Trench to the Japan Sea. Geophys. J. Int. 184, 1428–1444 (2011a)

    Google Scholar 

  • Huang, Z., Zhao, D., Wang, L.: Shear-wave anisotropy in the crust, mantle wedge and the subducting Pacific slab under Northeast Japan. Geochem. Geophys. Geosyst. 12, Q01002 (2011b)

    Google Scholar 

  • Huang, Z., Zhao, D., Wang, L.: Frequency-dependent shear-wave splitting and multilayer anisotropy in Northeast Japan. Geophys. Res. Lett. 38, L08302 (2011c)

    Google Scholar 

  • Huang, G., Bai, C., Greenhalgh, S.: Fast and accurate global multiphase arrival tracking: the irregular shortest-path method in a 3-D spherical earth model. Geophys. J. Int. 194, 1878–1892 (2013)

    Google Scholar 

  • Humphreys, E., Clayton, R.: Adaptation of back projection tomography to seismic travel time problems. J. Geophys. Res. 93, 1073–1085 (1988)

    Google Scholar 

  • Hung, S., Shen, Y., Chiao, L.: Imaging seismic velocity structure beneath the Iceland hotspot: a finite frequency approach. J. Geophys. Res. 109, B08305 (2004)

    Google Scholar 

  • Imanishi, K., Ellsworth, W.: Source scaling relationships of microearthquakes at Parkfield, CA, determined using the SAFOD pilot hole seismic array. In: Abercrombie, R. et al. (eds.) Earthquakes: Radiated Energy and the Physics of Earthquake Faulting. AGU, Washington, D.C. (2006) (Geophys. Monogr. Ser., vol. 170, pp. 81–90)

    Google Scholar 

  • Inoue, H., Fukao, Y., Tanabe, K., Ogata, Y.: Whole mantle P wave travel time tomography. Phys. Earth Planet. Inter. 59, 294–328 (1990)

    Google Scholar 

  • Ishise, M., Kawakatsu, K., Shiomi, K.: Anisotropic velocity structure under the Japan Islands using Hi-net arrival-time data. (1) Reexamination of the 3-D anisotropic velocity structure beneath Northeast Japan. Program and Abstracts of the Annual Meeting of Seismological Society of Japan, Hakodate, Japan, B12-02 (2012)

    Google Scholar 

  • Iyer, H., Hirahara, K. (Eds.): Seismic Tomography: Theory and Practice, p. 842. Chapman & Hall, Boca Raton (1993)

    Google Scholar 

  • Jacob, K.: Three-dimensional seismic ray tracing in a laterally heterogeneous spherical Earth. J. Geophys. Res. 75, 6675–6689 (1970)

    Google Scholar 

  • Julia, J., Ammon, C., Herrmann, R., Correig, A.: Joint inversion of receiver function and surface wave dispersion observations. Geophys. J. Int. 143, 99–112 (2000)

    Google Scholar 

  • Julian, B., Gubbins, D.: Three-dimensional seismic ray tracing. J. Geophys. 43, 95–113 (1977)

    Google Scholar 

  • Kamiya, S., Kobayashi, Y.: Seismological evidence for the existence of serpentinized wedge mantle. Geophys. Res. Lett. 27, 819–822 (2000)

    Google Scholar 

  • Kao, H., Behr, Y., Currie, C. et al.: Ambient seismic noise tomography of Canada and adjacent regions: part I. Crustal structures. J. Geophys. Res. 118, 5865–5887 (2013)

    Google Scholar 

  • Karato, S.: Importance of anelasticity in the interpretation of seismic tomography. Geophys. Res. Lett. 20, 1623–1626 (1993)

    Google Scholar 

  • Kennett, B., Engdahl, E.: Travel times for global earthquake location and phase identification. Geophys. J. Int. 105, 426–465 (1991)

    Google Scholar 

  • Kennett, B., Widiyantoro, S., van der Hilst, R.: Joint seismic tomography for bulk sound and shear wave speed in the Earth’s mantle. J. Geophys. Res. 103, 12469–12493 (1998)

    Google Scholar 

  • Ko, Y., Kuo, B., Hung, S.: Robust determination of earthquake source parameters and mantle attenuation. J. Geophys. Res. 117, B04304 (2012)

    Google Scholar 

  • Koketsu, K., Sekine, S.: Pseudo-bending method for three-dimensional seismic ray tracing in a spherical earth with discontinuities. Geophys. J. Int. 132, 339–346 (1998)

    Google Scholar 

  • Lees, J., Crosson, R.: Tomographic inversion for three-dimensional velocity structure at Mount St. Helens using earthquake data. J. Geophys. Res. 94, 5716–5729 (1989)

    Google Scholar 

  • Lees, J., VanDecar, J.: Seismic tomography constrained by Bouguer gravity anomalies: applications in Western Washington. Pure Appl. Geophys. 135, 31–52 (1991)

    Google Scholar 

  • Lei, J., Zhao, D., Su, Y.: Insight into the origin of the Tengchong intraplate volcano and seismotectonics in southwest China from local and teleseismic data. J. Geophys. Res. 114, B05302 (2009)

    Google Scholar 

  • Lin, F., Moschetti, M., Ritzwoller, M.: Surface wave tomography of the western United States from ambient seismic noise: Rayleigh and love wave phase velocity maps. Geophys. J. Int. 173, 281–298 (2008)

    Google Scholar 

  • Liu, X., Zhao, D., Li, S.: Seismic heterogeneity and anisotropy of the southern Kuril arc: Insight into megathrust earthquakes. Geophys. J. Int. 194, 1069–1090 (2013)

    Google Scholar 

  • Liu, X., Zhao, D., Li, S.: Seismic attenuation tomography of the Northeast Japan arc: Insight into the 2011 Tohoku earthquake (Mw 9.0) and subduction dynamics. J. Geophys. Res. 119, 1094–1118 (2014)

    Google Scholar 

  • Long, M.: Constraints on subduction geodynamics from seismic anisotropy. Rev. Geophys. 51, 76–112 (2013)

    Google Scholar 

  • Masters, G., Laske, G., Bolton, H., Dziewonski, A.: The relative behavior of shear velocity, bulk sound speed, and compressional velocity in the mantle: implications for chemical and thermal structure. In: Karato, S., Forte, A., Liebermann, R., Master, G., Stixrude, L. (eds.) Earth’s Deep Interior: Mineral Physics and Tomography from the Atomic to the Global Scale, pp. 63–87. AGU Monograph, Washington D.C. (2000).

    Google Scholar 

  • Maupin, V., Park, J.: Theory and Observations-Wave Propagation in Anisotropic Media, in Treatise on Geophysics, pp. 289–321, Schubert, G. (Ed.), Elsevier, Amsterdam (2007)

    Google Scholar 

  • Mayeda, K., Malagnini, L., Walter, W.: A new spectral ratio method using narrow band coda envelopes: evidence for non-self-similarity in the hector mine sequence. Geophys. Res. Lett. 34, L11303 (2007)

    Google Scholar 

  • Megnin, C., Romanowicz, B.: The three-dimensional shear velocity structure of the mantle from the inversion of body, surface and higher-mode waveforms. Geophys. J. Int. 143, 709–728 (2000)

    Google Scholar 

  • Menke, W.: Geophysical Data Analysis: Discrete Inverse Theory Third edition. Elsevier (2012)

    Google Scholar 

  • Mishra, O.P., Zhao, D.: Crack density, saturation rate and porosity at the 2001 Bhuj, India, earthquake hypocenter: a fluid driven earthquake? Earth Planet. Sci. Lett. 212, 393–405 (2003)

    Google Scholar 

  • Miyatake, T.: On the travel time calculation by using approximate ray tracing in a laterally heterogeneous velocity structure. J. Seismol. Soc. Japan 40, 99–110 (1987)

    Google Scholar 

  • Montelli, R., Nolet, G., Master, G., Dahlen, F., Hung, H.: Global P and PP traveltime tomography: rays versus waves. Geophys. J. Int. 158, 637–654 (2004)

    Google Scholar 

  • Mooney, W., Laske, G., Masters, G.: CRUST 5.1: A global crustal model at 5 × 5. J. Geophys. Res. 103, 727–747 (1998)

    Google Scholar 

  • Moorkamp, M., Jones, A., Fishwick, S.: Joint inversion of receiver functions, surface wave dispersion, and magnetotelluric data. J. Geophys. Res. 115, B04318 (2010)

    Google Scholar 

  • Moser, T.: Shortest path calculation of seismic rays. Geophysics 56, 59–67 (1991)

    Google Scholar 

  • Nakajima, J., Takei, Y., Hasegawa, A.: Quantitative analysis of the inclined low-velocity zone in the mantle wedge of northeastern Japan: a systematic change of melt-filled pore shapes with depth and its implications for melt migration. Earth Planet. Sci. Lett. 234, 59–70 (2005)

    Google Scholar 

  • Neele, F., VanDecar, J., Snieder, R.: The use of P wave amplitude data in a joint inversion with travel times for upper mantle velocity structure. J. Geophys. Res. 98, 12033–12054 (1993)

    Google Scholar 

  • Nettles, M. Dziewonski, A: Radially anisotropic shear velocity structure of the upper mantle globally and beneath North America. J. Geophys. Res. 113, B02303 (2008)

    Google Scholar 

  • Nolet, G.: Solving or resolving inadequate and noisy tomographic systems. J. Comput. Phys. 61, 463–82 (1985)

    Google Scholar 

  • Nolet, G. (Ed.): Seismic Tomography: With Applications in Global Seismology and Exploration Geophysics, p. 386. D. Reidel Publishing Company (1987)

    Google Scholar 

  • Nolet, G.: A Breviary of Seismic Tomography: Imaging the Interior of the Earth and Sun, p. 344. Cambridge University Press (2008)

    Google Scholar 

  • Nolet, G., Montelli, R., Virieux, J.: Explicit, approximate expressions for the resolution and a posteriori covariance of massive tomographic systems. Geophys. J. Int. 138, 36–44 (1999)

    Google Scholar 

  • O’Connell, R., Budiansky, B.: Seismic velocities in dry and saturated cracked solids. J. Geophys. Res. 79, 5412–5426 (1974)

    Google Scholar 

  • Paige, C., Saunders, M.: LSQR: An algorithm for sparse linear equations and sparse least squares. ACM Trans. Math. Softw. 8, 43–71 (1982)

    Google Scholar 

  • Park, J., Yu, Y.: Seismic determination of elastic anisotropy and mantle flow. Science 261, 1159–1162 (1993)

    Google Scholar 

  • Pavlis, G., Booker, J.: The mixed discrete continuous inverse problem: application to the simultaneous determination of earthquake hypocenters and velocity structure. J. Geophys. Res. 85, 4801–4810 (1980)

    Google Scholar 

  • Pereyra, V., Lee, W., Keller, H.: Solving two-point seismic ray-tracing problems in a heterogeneous medium, 1. A general adaptive finite difference method. Bull. Seismol. Soc. Am. 70, 79–99 (1980)

    Google Scholar 

  • Podvin, P., Lecomte, I.: Finite-difference computation of traveltimes in very contrasted velocity models: A massively parallel approach and its associated tools. Geophys. J. Int. 105, 271–284 (1991)

    Google Scholar 

  • Raitt, R., Shor, G., Francis, T., Morris, G.: Anisotropy of Pacific upper mantle. J. Geophys. Res. 74, 3095–3109 (1969)

    Google Scholar 

  • Sadeghi, H., Suzuki, S., Takenaka, H.: A two-point, three-dimensional seismic ray tracing using genetic algorithms. Phys. Earth Planet. Inter. 113, 355–365 (1999)

    Google Scholar 

  • Savage, M.K.: Seismic anisotropy and mantle deformation: what have we learned from shear wave splitting? Rev. Geophys. 37, 65–106 (1999)

    Google Scholar 

  • Scherbaum, F.: Combined inversion for the three-dimensional Q structure and source parameters using microearthquake spectra. J. Geophys. Res. 95, 12423–12438 (1990)

    Google Scholar 

  • Shapiro, N., Campillo, M., Stehly, L., Ritzwoller, M.: High-resolution surface wave tomography from ambient seismic noise. Science 307, 1615–1618 (2005)

    Google Scholar 

  • Shen, W., Ritzwoller, M., Schulte-Pelkum, V., Lin, F.: Joint inversion of surface wave dispersion and receiver functions: a Bayesian Monte-Carlo approach. Geophys. J. Int. 192, 807–836 (2013)

    Google Scholar 

  • Shito, A., Shibutan, T.: Nature of heterogeneity of the upper mantle beneath the northern Philippine Sea as inferred from attenuation and velocity tomography. Phys. Earth Planet. Inter. 140, 331–341 (2003)

    Google Scholar 

  • Silver, P.G.: Seismic anisotropy beneath the continents: probing the depths of geology. Ann. Rev. Earth Planet. Sci. 24, 385–432 (1996)

    Google Scholar 

  • Spakman, W., Nolet, G.: Imaging algorithms, accuracy and resolution in delay time tomography. In Vlaar N. et al. (eds.): Mathematical Geophysics, pp. 155–87. D. Reidel, Norwell (1988)

    Google Scholar 

  • Spencer, C., Gubbins, D.: Travel-time inversion for simultaneous earthquake location and velocity structure determination in laterally varying media. Geophys. J.R. Astron. Soc. 63, 95–116 (1980)

    Google Scholar 

  • Suetsugu, D., Inoue, T., Obayashi, M., Yamada, A. et al.: Depths of the 410 km and 660 km discontinuities in and around the stagnant slab beneath the Philippine Sea: is water stored in the stagnant slab? Phys. Earth Planet. Inter. 183, 270–279 (2010)

    Google Scholar 

  • Takei, Y.: Effect of pore geometry on VP /VS: from equilibrium geometry to crack. J. Geophys. Res. 107, doi:10.1029/2001JB000522 (2002)

    Google Scholar 

  • Tarantola, A.: Inverse Problem Theory and Methods for Model Parameter Estimation. Society for Industrial and Applied Mathematics (2005)

    Google Scholar 

  • Thurber, C.: Earthquake locations and three-dimensional crustal structure in the Coyote Lake area, central California. J. Geophys. Res. 88, 8226–8236 (1983)

    Google Scholar 

  • Thurber, C., Aki, K.: Three-dimensional seismic imaging. Ann. Rev. Earth Planet. Sci. 15, 115–139 (1987)

    Google Scholar 

  • Thurber, C., Ellsworth, W.: Rapid solution of ray tracing problems in heterogeneous media. Bull. Seismol. Soc. Am. 70, 1137–1148 (1980)

    Google Scholar 

  • Tian, Y., Liu, L.: Geophysical properties and seismotectonics of the Tohoku forearc region. J. Asian Earth Sci. 64, 235–244 (2013)

    Google Scholar 

  • Tian, Y., Zhao, D.: Seismic anisotropy and heterogeneity in the Alaska subduction zone. Geophys. J. Int. 190, 629–649 (2012)

    Google Scholar 

  • Tichelaar, B., Ruff, L.: How good are our best models? EOS, Trans. Am. Geophys. Un. 70, 593–606 (1989)

    Google Scholar 

  • Um, J., Thurber, C.: A fast algorithm for two-point seismic ray tracing. Bull. Seismol. Soc. Am. 77, 972–986 (1987)

    Google Scholar 

  • Van der Hilst, R., de Hoop, M.: Banana-doughnut kernels and mantle tomography. Geophys. J. Int. 163, 956–961 (2005)

    Google Scholar 

  • van der Sluis, A., van der Vorst, H.: Numerical solution of large, sparse linear algebraic systems arising from tomographic problems. In Nolet, G. (ed.) Seismic Tomography, pp. 49-84. D. Reidel Publishing Company (1987)

    Google Scholar 

  • Vasco, D., Johnson, L., Pulliam, R.: Lateral variations in mantle velocity structure and discontinuities determined from P, PP, S, SS, and SS-SdS travel time residuals. J. Geophys. Res. 100, 24037–24059 (1995)

    Google Scholar 

  • Vasco, D., Johnson, L., Marques, O.: Resolution, uncertainty, and whole Earth tomography. J. Geophys. Res. 108, 2022 (2003)

    Google Scholar 

  • Vidale, J. 1988. Finite-difference traveltime calculation. Bull. Seismol. Soc. Am. 78, 2062–2076.

    Google Scholar 

  • Vidale, J.: Finite-difference calculation of traveltime in three dimensions. Geophysics 55, 521–526 (1990)

    Google Scholar 

  • Wagner, L., Beck, S., Zandt, G.: Upper mantle structure in the south central Chilean subduction zone (30° to 36°S). J. Geophys. Res. 110, B01308 (2005)

    Google Scholar 

  • Waldhauser, F., Ellsworth, W.: A double-difference earthquake location algorithm: Method and application to the northern Hayward fault. Bull. Seism. Soc. Am. 90, 1353–1368 (2000)

    Google Scholar 

  • Wang, Z., Zhao, D.: Suboceanic earthquake location and seismic structure in the Kanto district, central Japan. Earth Planet. Sci. Lett. 241, 789–803 (2006)

    Google Scholar 

  • Wang, J., Zhao, D.: P-wave anisotropic tomography beneath Northeast Japan. Phys. Earth planet. Inter. 170, 115–133 (2008)

    Google Scholar 

  • Wang, J., Zhao, D.: P wave anisotropic tomography of the Nankai subduction zone in Southwest Japan. Geochem. Geophys. Geosyst. 13, Q05017 (2012)

    Google Scholar 

  • Wang, J., Zhao, D.: P-wave tomography for 3-D radial and azimuthal anisotropy of Tohoku and Kyushu subduction zones. Geophys. J. Int. 193, 1166–1181 (2013)

    Google Scholar 

  • Wang, J., Wu, H., Zhao, D.: P wave radial anisotropy tomography of the upper mantle beneath the North China Craton. Geochem. Geophys. Geosyst. 15, 2195–2210 (2014)

    Google Scholar 

  • Wesson, R.: Travel-time inversion for laterally inhomogeneous crustal velocity models. Bull. Seismol. Soc. Am. 61, 729–746 (1971)

    Google Scholar 

  • West, M., Gao, W., Grand, S.: A simple approach to the joint inversion of seismic body and surface waves applied to the southwest U.S. Geophys. Res. Lett. 31, L15615 (2004)

    Google Scholar 

  • Wiggins, R.: The general linear inverse problem: implication of surface waves and free oscillations for Earth structure. Rev. Geophys. Space Phys. 10, 251–285 (1972)

    Google Scholar 

  • Xia, S., Zhao, D., Qiu, X. et al.: Mapping the crustal structure under active volcanoes in central Tohoku, Japan using P and PmP data. Geophys. Res. Lett. 34, L10309 (2007)

    Google Scholar 

  • Yamada, A., Zhao, D., Inoue, T., Suetsugu, D., Obayashi, M.: Seismological evidence for compositional variations at the base of the mantle transition zone under Japan Islands. Gondwana Res. 16, 482–490 (2009)

    Google Scholar 

  • Yao, Z.S., Roberts, R., Tryggvason, A.: Calculating resolution and covariance matrices for seismic tomography with the LSQR method. Geophys. J. Int. 138, 886–894 (1999)

    Google Scholar 

  • Yuan, H., Romanowicz, B., Fischer, K., Abt, D.: 3-D shear wave radially and azimuthally anisotropic velocity model of the North American upper mantle. Geophys. J. Int. 184, 1237–1260 (2011)

    Google Scholar 

  • Zhang, J., McMechan, G.: Estimation of resolution and covariance for large matrix inversions. Geophys. J. Int. 121, 409–426 (1995)

    Google Scholar 

  • Zhang, H., Thurber, C.: Double-difference tomography: the method and its application to the Hayward fault, California. Bull. Seismol. Soc. Am. 93, 1875–1889 (2003)

    Google Scholar 

  • Zhang, H., Thurber, C.: Estimating the model resolution matrix for large seismic tomography problems based on Lanczos bidiagonalization with partial reorthogonalization. Geophys. J. Int. 170, 337–345 (2007)

    Google Scholar 

  • Zhao, D.: A tomographic study of seismic velocity structure in the Japan Islands. Ph.D. thesis, Tohoku University (1991)

    Google Scholar 

  • Zhao, D.: New advances of seismic tomography and its applications to subduction zones and earthquake fault zones. Island Arc 10, 68–84 (2001a)

    Google Scholar 

  • Zhao, D.: Seismic structure and origin of hotspots and mantle plumes. Earth Planet. Sci. Lett. 192, 251–265 (2001b)

    Google Scholar 

  • Zhao, D.: Global tomographic images of mantle plumes and subducting slabs: Insight into deep Earth dynamics. Phys. Earth Planet. Inter. 146, 3–34 (2004)

    Google Scholar 

  • Zhao, D.: Multiscale seismic tomography and mantle dynamics. Gondwana Res. 15, 297–323 (2009)

    Google Scholar 

  • Zhao, D.: Tomography and dynamics of Western-Pacific subduction zones. Monogr. Environ. Earth Planets 1, 1–70 (2012)

    Google Scholar 

  • Zhao, D., Lei, J.: Seismic ray path variations in a 3-D global velocity model. Phys. Earth Planet. Inter. 141, 153–166 (2004)

    Google Scholar 

  • Zhao, D., Mizuno, T.: Crack density and saturation rate in the 1995 Kobe earthquake region. Geophys. Res. Lett. 26, 3213–3216 (1999)

    Google Scholar 

  • Zhao, D., Horiuchi, S., Hasegawa, A.: 3-D seismic velocity structure of the crust and uppermost mantle in the northeastern Japan arc. Tectonophysics 181, 135–149 (1990)

    Google Scholar 

  • Zhao, D., Hasegawa, A., Horiuchi, S.: Tomographic imaging of P and S wave velocity structure beneath northeastern Japan. J. Geophys. Res. 97, 19909–19928 (1992)

    Google Scholar 

  • Zhao, D., Kanamori, H., Negishi, H., Wiens, D.: Tomography of the source area of the 1995 Kobe earthquake: Evidence for fluids at the hypocenter? Science 274, 1891–1894 (1996)

    Google Scholar 

  • Zhao, D., Mishra, O.P., Sanda, R.: Influence of fluids and magma on earthquakes: seismological evidence. Phys. Earth Planet. Inter. 132, 249–267 (2002)

    Google Scholar 

  • Zhao, D., Todo, S., Lei, J.: Local earthquake reflection tomography of the Landers aftershock area. Earth Planet. Sci. Lett. 235, 623–631 (2005)

    Google Scholar 

  • Zhao, D., Wang, Z., Umino, N., Hasegawa, A.: Tomographic imaging outside a seismic network: Application to the northeast Japan arc. Bull. Seismol. Soc. Am. 97, 1121–1132 (2007)

    Google Scholar 

  • Zhao, D., Wang, Z., Umino, N., Hasegawa, A.: Mapping the mantle wedge and interplate thrust zone of the northeast Japan arc. Tectonophysics 467, 89–106 (2009)

    Google Scholar 

  • Zhao, D., Huang, Z., Umino. N., Hasegawa, A., Kanamori, H.: Structural heterogeneity in the megathrust zone and mechanism of the 2011 Tohoku-oki earthquake (Mw 9.0). Geophys. Res. Lett. 38, L17308 (2011)

    Google Scholar 

  • Zhao, D., Yanada, T., Hasegawa, A., Umino, N., Wei, W.: Imaging the subducting slabs and mantle upwelling under the Japan Islands. Geophys. J. Int. 190, 816–828 (2012)

    Google Scholar 

  • Zhao, D., Yamamoto, Y., Yanada, T.: Global mantle heterogeneity and its influence on teleseismic regional tomography. Gondwana Res. 23, 595–616 (2013)

    Google Scholar 

  • Zheng, Y., Shen, W., Zhou, L., Yang, Y., Xie, Z., Ritzwoller, M.: Crust and uppermost mantle beneath the North China Craton, northeastern China, and the Sea of Japan from ambient noise tomography. J. Geophys. Res. 116, B12312 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dapeng Zhao .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Zhao, D. (2015). Methodology of Seismic Tomography. In: Multiscale Seismic Tomography. Springer Geophysics. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55360-1_2

Download citation

Publish with us

Policies and ethics