Skip to main content

Electron Transfer Pathway Analysis in Bacterial Photosynthetic Reaction Center

  • Chapter
Chemical Science of π-Electron Systems

Abstract

A new computational scheme to analyze electron transfer (ET) pathways in large biomolecules is presented with applications to ETs in bacterial photosynthetic reaction center. It consists of a linear combination of fragment molecular orbitals and an electron tunneling current analysis, which enables an efficient first-principle analysis of ET pathways in large biomolecules. The scheme has been applied to the ET from menaquinone to ubiquinone via nonheme iron complex in bacterial photosynthetic reaction center. It has revealed that not only the central Fe2+ ion but also particular histidine ligands are involved in the ET pathways in such a way to mitigate perturbations that can be caused by metal ion substitution and depletion, which elucidates the experimentally observed insensitivity of the ET rate to these perturbations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moser CC, Keske JM, Warncke K, Farid RS, Dutton PL (1992) Nature of biological electron transfer. Nature 355:796

    Article  CAS  Google Scholar 

  2. Dutton PL, Mosser CC (1994) Quantum biomechanics of long-range electron transfer in protein: hydrogen bonds and reorganization energies. Proc Natl Acad Sci USA 91:10247

    Article  CAS  Google Scholar 

  3. Winkler JR, Di Bilio AJ, Farrow NA, Richards JH, Gray HB (1999) Electron tunneling in biological molecules. Pure Appl Chem 71:1753

    Google Scholar 

  4. Gray HB, Winkler JR (2005) Long-range electron transfer. Proc Natl Acad Sci USA 102:3534

    Article  CAS  Google Scholar 

  5. Farver O, Pecht I (2011) Electron transfer in blue copper proteins. Coord Chem Rev 255:757

    Article  CAS  Google Scholar 

  6. Marcus RA, Sutin N (1985) Electron transfers in chemistry and biology. Biochim Biophys Acta 811:265

    Article  CAS  Google Scholar 

  7. Sumi H (1997) Electron transfer via a midway molecule as seen in primary processes in photosynthesis: superexcharge or sequential, or unified? J Electroanal Chem 438:11

    Article  CAS  Google Scholar 

  8. Fedorov DG, Kitaura K (2007) Extending the power of quantum chemistry to large systems with the fragment molecular orbital method. J Phys Chem A 111:6904

    Article  CAS  Google Scholar 

  9. Tanaka S, Mochizuki Y, Komeiji Y, Okiyama Y, Fukuzawa K (2014) Electron-correlated fragment-molecular-orbital calculations for biomolecular and nano systems. Phys Chem Chem Phys 16:10310

    Article  CAS  Google Scholar 

  10. Yang W, Lee TS (1995) A density-matrix divide-and-conquer approach for electronic structure calculations of large molecules. J Chem Phys 103:5674

    Article  CAS  Google Scholar 

  11. Akama T, Kobayashi M, Nakai H (2009) Electronic temperature in divide-and-conquer electronic structure calculation revisited: assessment and improvement of self-consistent field convergence. Int J Quantum Chem 109:2706

    Article  CAS  Google Scholar 

  12. Tsuneyuki S, Kobori T, Akagi K, Sodeyama K, Terakura K, Fukuyama H (2009) Molecular orbital calculation of biomolecules with fragment molecular orbitals. Chem Phys Lett 476:104

    Article  CAS  Google Scholar 

  13. Kobori T, Sodeyama K, Otsuka T, Tateyama Y, Tsuneyuki S (2013) Trimer effects in fragment molecular orbital-linear combination of molecular orbitals calculation of one-electron orbitals for biomolecules. J Chem Phys 139(9):094113

    Article  Google Scholar 

  14. Nishioka H, Ando K (2011) Electronic coupling calculation and pathway analysis of electron transfer reaction using ab initio fragment-based method. I. FMO–LCMO approach. J Chem Phys 134:204109

    Google Scholar 

  15. Kitoh-Nishioka H, Ando K (2012) Fragment molecular orbital study on electron tunneling mechanisms in bacterial photosynthetic reaction center. J Phys Chem B 116(43):12933

    Article  CAS  Google Scholar 

  16. Cave RJ, Newton MD (1997) Calculation of electronic coupling matrix elements for ground and excited state electron transfer reactions: comparison of the generalized Mulliken-Hush and block diagonalization methods. J Chem Phys 106:9213

    Article  CAS  Google Scholar 

  17. Skourtis SS, Beratan DN (1999) Theories of structure–function relationships for bridge-mediated electron transfer reactions. Adv Chem Phys 106:377

    CAS  Google Scholar 

  18. Regan JJ, Onuchic JN (1999) Electron-transfer tubes. Adv Chem Phys 107:497

    CAS  Google Scholar 

  19. Stuchebrukhov AA (2003) Long-distance electron tunneling in proteins. Theor Chem Acc 110:291

    Article  CAS  Google Scholar 

  20. Beratan DN, Betts JN, Onuchic JN (1991) Protein electron transfer rates set by the bridging secondary and tertiary structure. Science 252:1285

    Article  CAS  Google Scholar 

  21. Nishioka H, Ando K (2011) Pathway analysis of super-exchange electronic couplings in electron transfer reactions using a multi-configuration self-consistent field method. Phys Chem Chem Phys 13:7043

    Article  CAS  Google Scholar 

  22. Leibl W, Breton J (1991) Kinetic properties of the acceptor quinone complex in Rhodopseudomonas viridis. Biochemistry 30:9634

    Article  CAS  Google Scholar 

  23. Mathis P, Sinning I, Michel H (1992) Kinetics of electron transfer from the primary to the secondary quinone in Rhodopseudomonas viridis. Biochim Biophys Acta 1098:151

    Article  CAS  Google Scholar 

  24. Feher G, Okamura MY (1999) The primary and secondary acceptors in bacterial photosynthesis: II. The structure of the \(\mathrm{Fe}^{2+} -\mathrm{ Q}^{-}\) complex. Appl Magn Reson 16:63

    Google Scholar 

  25. Debus RJ, Feher G, Okamura MY (1986) Iron-depleted reaction centers from Rhodopseudomonas sphaeroides R-26.1: characterization and reconstitution with iron (2+), manganese (2+), cobalt (2+), nickel (2+), copper (2+), and zinc (2+). Biochemistry 25:2276

    Google Scholar 

  26. Moser CC, Page CC, Farid R, Dutton PL (1995) Biological electron transfer. J Bioenerg Biomembr 27:263

    Article  CAS  Google Scholar 

  27. Deisenhofer J, Epp O, Sinning I, Michel H (1995) Crystallographic refinement at 2.3 Å resolution and refined model of the photosynthetic reaction centre from Rhodopseudomonas viridis. J Mol Biol 246:429

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirotaka Kitoh-Nishioka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Kitoh-Nishioka, H., Ando, K. (2015). Electron Transfer Pathway Analysis in Bacterial Photosynthetic Reaction Center. In: Akasaka, T., Osuka, A., Fukuzumi, S., Kandori, H., Aso, Y. (eds) Chemical Science of π-Electron Systems. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55357-1_39

Download citation

Publish with us

Policies and ethics