Skip to main content

STM Characterization of π-Electron Systems

  • Chapter
Chemical Science of π-Electron Systems
  • 1860 Accesses

Abstract

Molecular-resolution scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS) are powerful tools for probing the electrical properties of individual π-electron systems, providing us with vital information on adsorption geometry, intermolecular patterns, and local conductivity of single molecules. These characteristics allow us to understand the function of single molecules and the mechanism of how they operate which in turn allow us to intelligently design more complicated multicomponent architectures. In this chapter, characterizations of π-electron systems by STM and STS are demonstrated. Experimental conditions of STM and STS for the measurements of π-electron systems are summarized. Molecular-resolution STM images of endohedral metallofullerenes and subporphyrins are shown. STS measurements reveal electrical properties on π-electron systems such as HOMO and LUMO. Molecular resonant tunneling behaviors of tribenzosubporphyrin are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kano S, Tada T, Majima Y (2015) Nanoparticle characterization based on STM and STS. Chem Soc Rev 44:970

    Article  CAS  Google Scholar 

  2. Iwamoto M, Ogawa D, Yasutake Y, Azuma Y, Umemoto H, Ohashi K, Izumi N, Shinohara H, Majima Y (2010) Molecular orientation of individual Lu@C82 molecules demonstrated by scanning tunneling microscopy. J Phys Chem C 114:14704

    Google Scholar 

  3. Yasutake Y, Shi Z, Okazaki T, Shinohara H, Majima Y (2005) Single molecular orientation switching of an endohedral metallofullerene. Nano Lett 5:1057–1060

    Article  CAS  Google Scholar 

  4. Majima Y, Ogawa D, Iwamoto M, Azuma Y, Tsurumaki E, Osuka A (2013) Negative differential resistance by molecular resonant tunneling between neutral tribenzosubporphine anchored to a Au(111) surface and tribenzosubporphine cation adsorbed on to a Tungsten tip. J Am Chem Soc 135:14159–14166

    Article  CAS  Google Scholar 

  5. Inokuma Y, Kwon JH, Ahn TK, Yoon M-C, Kim D, Osuka A (2006) Tribenzosubporphines: synthesis and characterization. Angew Chem Int Ed 45:961

    Article  CAS  Google Scholar 

  6. Inokuma Y, Osuka A (2008) Subporphyrins: emerging contracted porphyrins with aromatic 14 pi-electronic systems and bowl-shaped structures: rational and unexpected synthetic routes. Dalton Trans 19:2517

    Article  Google Scholar 

  7. Osuka A, Tsurumaki E, Tanaka T (2011) Subporphyrins: a legitimate ring-contracted porphyrin with versatile electronic and optical properties. Bull Chem Soc Jpn 84:679

    Article  CAS  Google Scholar 

  8. Kohn W, Sham L (1965) Quantum density oscillations in an inhomogeneous electron gas. Phys Rev 140:A1133

    Article  Google Scholar 

  9. Parr RG, Yang W (1994) Density-functional theory of atoms and molecules. Oxford Science, Oxford

    Google Scholar 

  10. Becke AD (1993) Density – functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648

    Google Scholar 

  11. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785

    Article  CAS  Google Scholar 

  12. Gaussian 09, Revision D. 01 Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE Jr, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009). Gaussian, Inc., Wallingford CT

    Google Scholar 

  13. Zhao J, Zeng C, Cheng X, Wang K, Wang G, Yang J, Hou JG, Zhu Q (2005) Single C59N molecule as a molecular rectifier. Phys Rev Lett 95:045502

    Article  Google Scholar 

  14. Oyama Y, Majima Y, Iwamoto M (1999) Tunneling resistance of double-barrier tunneling structures with an alkanethiol-protected Au nanoparticle. J Appl Phys 86:7087

    Article  CAS  Google Scholar 

  15. Zhang H, Yasutake Y, Shichibu Y, Teranishi T, Majima Y (2005) Phys Rev B 72:205441

    Article  Google Scholar 

  16. Porter MD, Bright TB, Allara DL, Chidsey CED (1987) Spontaneously organized molecular assemblies. 4. Structural characterization of n-alkyl thiol monolayers on gold by optical ellipsometry, infrared spectroscopy, and electrochemistry. J Am Chem Soc 109:3559

    Google Scholar 

  17. Bumm LA, Arnold JJ, Dunbar TD, Allara DL, Weiss PS (1999) Electron transfer through organic molecules. J Phys Chem B 103:8122

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author thanks Prof. A. Osaka for synthesis of tribenzosubporphines and fruitful discussions. The work was partially supported by a Grant-in-Aid for Scientific Research on Innovative Areas (No. 20108011, π – Space) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), and MEXT Elements Strategy Initiative to Form Core Research Center, and the BK Plus program, Basic Science Research program (NRF-2014R1A1030419).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yutaka Majima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Majima, Y. (2015). STM Characterization of π-Electron Systems. In: Akasaka, T., Osuka, A., Fukuzumi, S., Kandori, H., Aso, Y. (eds) Chemical Science of π-Electron Systems. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55357-1_37

Download citation

Publish with us

Policies and ethics