Skip to main content

Fullerene Derivatives for Organic Solar Cells

  • Chapter
Chemical Science of π-Electron Systems

Abstract

Functionalization of fullerenes can produce various fullerene-based electron acceptors for solution-processed organic thin-film solar cells. In this chapter, silylmethyl[60]fullerenes (SIMEFs), methano indene fullerenes (MIFs), fullerenyl esters, and lithium ion-encapsulated fullerene derivatives are introduced to discuss design concepts, synthetic methods, and photovoltaic properties of these fullerene electron acceptors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Matsuo Y, Iwashita A, Abe Y, Li CZ, Matsuo K, Hashiguchi M, Nakamura E (2008) Regioselective synthesis of 1,4-Di(organo)[60]fullerenes through DMF-assisted mono-addition of silylmethyl Grignard reagents and subsequent alkylation reaction. J Am Chem Soc 130:15429–15436. doi:10.1021/ja8041299

    Article  CAS  Google Scholar 

  2. Matsuo Y, Sato Y, Niinomi T, Soga I, Tanaka H, Nakamura E (2009) Columnar structure in bulk heterojunction in solution-processable three-layered p-i-n organic photovoltaic devices using tetrabenzoporphyrin precursor and silylmethyl[60]fullerene. J Am Chem Soc 131:16048–16050. doi:10.1021/ja9048702

    Article  CAS  Google Scholar 

  3. Matsuo Y (2012) Design concept for high-LUMO-level fullerene electron-acceptors for organic solar cells. Chem Lett 41:754–759. doi:10.1246/cl.2012.754

    Article  CAS  Google Scholar 

  4. Matsuo Y, Hatano J, Kuwabara T, Takahashi K (2012) Fullerene acceptor for improving open-circuit voltage in inverted organic photovoltaic devices without accompanying decrease in short-circuit current density. Appl Phys Lett 100:063303. doi:10.1063/1.3683469

    Article  Google Scholar 

  5. Tanaka H, Abe Y, Matsuo Y, Kawai J, Soga I, Sato Y, Nakamura E (2012) An amorphous mesophase generated by thermal annealing for high-performance organic photovoltaic devices. Adv Mater 24:3521–3525. doi:10.1002/adma.201200490

    Article  CAS  Google Scholar 

  6. Matsuo Y, Oyama H, Soga I, Okamoto T, Tanaka H, Saeki A, Seki S, Nakamura E (2013) 1-Aryl-4-Silylmethyl[60]fullerenes: synthesis, properties, and photovoltaic performance. Chem Asian J 8:121–128. doi:10.1002/asia.201200726

    Article  CAS  Google Scholar 

  7. Lenes M, Wetzelaer GJAH, Kooistra FB, Veenstra SC, Hummelen JC, Blom PWM (2008) Fullerene bisadducts for enhanced open-circuit voltages and efficiencies in polymer solar cells. Adv Mater 20:2116–2119. doi:10.1002/adma.200702438

    Article  CAS  Google Scholar 

  8. He Y, Chen HY, Hou J, Li Y (2010) Indene − C60 bisadduct: a new acceptor for high-performance polymer solar cells. J Am Chem Soc 132:1377–1382. doi:10.1021/ja908602j

    Article  CAS  Google Scholar 

  9. Zhen Y, Obata N, Matsuo Y, Nakamura E (2012) Benzo[c]thiophene-C60 diadduct: an electron acceptor for p–n junction organic solar cells harvesting visible to near-IR light. Chem Asian J 7:2644–2649. doi:10.1002/asia.201200698

    Article  CAS  Google Scholar 

  10. Zhang Y, Matsuo Y, Li CZ, Tanaka H, Nakamura E (2011) A scalable synthesis of methano[60]fullerene and congeners by the oxidative cyclopropanation reaction of silylmethylfullerene. J Am Chem Soc 133:8086–8089. doi:10.1021/ja201267t

    Article  CAS  Google Scholar 

  11. Li CZ, Chien SC, Yip HL, Chueh CC, Chen FC, Matsuo Y, Nakamura E, Jen AKY (2011) Facile synthesis of a 56π-electron 1,2-dihydromethano-[60]PCBM and its application for thermally stable polymer solar cells. Chem Commun 47:10082–10084. doi:10.1039/C1CC14446D

    Article  CAS  Google Scholar 

  12. Li CZ, Matsuo Y, Nakamura E (2011) Regioselective synthesis of tetra(aryl)-mono(silylmethyl)[60]fullerenes and derivatization to methanofullerene compound. Tetrahedron 67:9944–9949. doi:10.1016/j.tet.2011.09.125

    Article  CAS  Google Scholar 

  13. Wienk MM, Kroon JM, Verhees WJH, Knol J, Hummelen JC, van Hal PA, Janssen RAJ (2003) Efficient methano[70]fullerene/MDMO-PPV bulk heterojunction photovoltaic cells. Angew Chem Int Ed 42:3371–3375. doi:10.1002/anie.200351647

    Article  CAS  Google Scholar 

  14. Kooistra FB, Knol J, Kastenberg F, Popescu LM, Verhees WJH, Kroon JM, Hummelen JC (2007) Increasing the open circuit voltage of bulk-heterojunction solar cells by raising the LUMO level of the acceptor. Org Lett 9:551–554. doi:10.1021/ol062666p

    Article  CAS  Google Scholar 

  15. Zhou H, Yang L, Price SC, Knight KJ, You W (2010) Enhanced photovoltaic performance of low-bandgap polymers with deep LUMO levels. Angew Chem Int Ed 49:7992–7995. doi:10.1002/anie.201003357

    Article  CAS  Google Scholar 

  16. Yang C, Cho S, Heeger AJ, Wudl F (2009) Heteroanalogues of PCBM: N-bridged imino-PCBMs for organic field-effect transistors. Angew Chem Int Ed 48:1592–1595. doi:10.1002/anie.200805228

    Article  CAS  Google Scholar 

  17. Nagamachi T, Takeda Y, Nakayama K, Minakata S (2012) Selective functionalization of fullerenes with N, N-dihalosulfonamides as an N1 unit: versatile syntheses of Aza[60]fulleroids and Aziridino[60]fullerenes and their application to photovoltaic cells. Chem Euro J 18:12035–12045. doi:10.1002/chem.201201680

    Article  CAS  Google Scholar 

  18. Creegan KM, Robbins JL, Robbins WK, Millar JM, Sherwood RD, Tindall PJ, Cox DM, Smith AB III, McCauley JP Jr, Jones DR, Gallagher RT (1992) Synthesis and characterization of C60O, the first fullerene epoxide. J Am Chem Soc 114:1103–1105. doi:10.1021/ja00029a058

    Article  CAS  Google Scholar 

  19. Chiang LY, Swirczewski JW, Hsu CS, Chowdhury SK, Cameron S (1791–1793) Creegan K (1992) multi-hydroxy additions onto C60 fullerene molecules. J Chem Soc Chem Commun. doi:10.1039/C39920001791

    Google Scholar 

  20. Baranov V, Hopkinson AC, Bohme DK (1997) Isomer-specific trends with charge state in gas-phase reactions of fullerene cations, C60x + (x = 1–3), with nitromethane and methyl nitrite: polymethoxylation of C60 dications. J Am Chem Soc 119:7055–7060. doi:10.1021/ja962530u

    Article  CAS  Google Scholar 

  21. Gan L, Huang S, Zhang X, Zhang A, Cheng B, Cheng H, Li X, Shang G (2002) Fullerenes as a tert-butylperoxy radical trap, metal catalyzed reaction of tert-butyl hydroperoxide with fullerenes, and formation of the first fullerene mixed peroxides C60(O)(OOtBu)4 and C70(OOtBu)10. J Am Chem Soc 124:13384–13385. doi:10.1021/ja027714p

    Article  CAS  Google Scholar 

  22. Elemes Y, Silverman SK, Sheu C, Kao M, Foote CS, Alvarez MM, Whetten RL (1992) Reaction of C60 with dimethyldioxirane–formation of an epoxide and a 1,3-dioxolane derivative. Angew Chem Int Ed 31:351–353. doi:10.1002/anie.199203511

    Article  Google Scholar 

  23. Averdung J, Mattay J, Jacobi D, Abraham W (1995) Addition of photochemically generated acylnitrenes to C60. Tetrahedron 51:2543–2552. doi:10.1016/0040-4020(95)00013-X

    Article  CAS  Google Scholar 

  24. Meier MS, Poplawska M (1996) The addition of nitrile oxides to C60. Tetrahedron 52:5043–5052. doi:10.1016/0040-4020(96)00112-3

    Article  CAS  Google Scholar 

  25. Jensen AW, Khong A, Saunders M, Wilson SR, Schuster DI (1997) Photocycloaddition of cyclic 1,3-diones to C60. J Am Chem Soc 119:7303–7307. doi:10.1021/ja962509t

    Article  CAS  Google Scholar 

  26. Bernstein R, Foote CS (1998) Activated carbon as the reagent for the oxidative cyclization of fullerene adducts. Tetrahedron Lett 39:7051–7054. doi:10.1016/S0040-4039(98)01527-5

    Article  CAS  Google Scholar 

  27. Hashiguchi M, Obata N, Maruyama M, Yeo YS, Ueno T, Ikebe T, Takahashi I, Matsuo Y (2012) FeCl3-mediated synthesis of fullerenyl esters as low-LUMO acceptors for organic photovoltaic devices. Org Lett 14:3276–3279. doi:10.1021/ol301186u

    Article  CAS  Google Scholar 

  28. Hou J, Chen HY, Zhang S, Chen RI, Yang Y, Wu Y, Li G (2009) Synthesis of a low band gap polymer and its application in highly efficient polymer solar cells. J Am Chem Soc 131:15586–15587. doi:10.1021/ja9064975

    Article  CAS  Google Scholar 

  29. Aoyagi S, Nishibori E, Sawa H, Sugimoto K, Takata M, Miyata Y, Kitaura R, Shinohara H, Okada H, Sakai T, Ono Y, Kawachi K, Yokoo K, Ono S, Omote K, Kasama Y, Ishikawa S, Komuro T, Tobita H (2010) A layered ionic crystal of polar Li@C60 superatoms. Nat Chem 2:678–683. doi:10.1038/nchem.698

    Article  CAS  Google Scholar 

  30. Fukuzumi S, Ohkubo K, Kawashima Y, Kim DS, Park JS, Jana A, Lynch VM, Kim D, Sessler JL (2011) J Am Chem Soc 133:15938–15941. doi:10.1021/ja207588c

    Article  CAS  Google Scholar 

  31. Matsuo Y, Okada H, Maruyama M, Sato H, Tobita H, Ono Y, Omote K, Kawachi K, Kasama Y (2012) Covalently chemical modification of lithium ion-encapsulated fullerene: synthesis and characterization of [Li+@PCBM]PF6 . Org Lett 14:3784–3787. doi:10.1021/ol301671n

    Article  CAS  Google Scholar 

  32. Kawakami H, Okada H, Matsuo Y (2013) Efficient Diels–Alder addition of cyclopentadiene to lithium ion encapsulated [60]fullerene. Org Lett 2013(15):4466–4469. doi:10.1021/ol4020046

    Article  Google Scholar 

  33. Ueno H, Kawakami H, Nakagawa K, Okada H, Ikuma N, Aoyagi S, Kokubo K, Matsuo Y, Oshima T (2014) Kinetic study of the Diels–Alder reaction of Li+@C60 with cyclohexadiene: greatly increased reaction rate by encapsulated Li+. J Am Chem Soc 136:11162–11167. doi:10.1021/ja505952y

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author sincerely thanks Professor Eiichi Nakamura (The University of Tokyo), Mitsubishi Chemical Corporation, and all collaborators listed in the literature cited. The author gratefully acknowledges the Funding Program for Next-Generation World-Leading Researchers (GR30).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yutaka Matsuo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Matsuo, Y. (2015). Fullerene Derivatives for Organic Solar Cells. In: Akasaka, T., Osuka, A., Fukuzumi, S., Kandori, H., Aso, Y. (eds) Chemical Science of π-Electron Systems. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55357-1_33

Download citation

Publish with us

Policies and ethics