Skip to main content

Photoinduced Electron-Transfer Functions of π-Electron Donor–Acceptor Supramolecular Complexes

  • Chapter
Chemical Science of π-Electron Systems

Abstract

This chapter describes the recent development of supramolecular π-electron donor–acceptor complexes linked by noncovalent bonds for light harvesting and charge separation. Carbon nanomaterials such as carbon nanohorns and graphene oxides act as π-electron donors to construct π-electron donor–acceptor supramolecular nanohybrids linked with π-electron acceptors such as fullerenes and perylenediimide, which undergo efficient charge separation. Multiple reaction center models have been constructed using multiporphyrin assemblies (porphyrin dendrimers and porphyrin polypeptides), which are noncovalently linked with π-electron acceptors, affording efficient energy migration, followed by long-lived charge separation. Bimolecular charge recombination of charge-separated states has been prohibited in supramolecular complexes between cationic and anionic porphyrins, affording the long-lived charge-separated states in solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. IPCC fifth assessment report: climate change 2013 (AR5) from IPCC website: www.ipcc.ch/report/ar5/wg1/

  2. Leung DYC, Caramanna G, Maroto-Valer MM (2014) Renew Sust Energ Rev 39:426–443

    Article  CAS  Google Scholar 

  3. Reddy KG, Deepak TG, Anjusree GS, Thomas S, Vadukumpully S, Subramanian KRV, Nairb SV (2014) A. Nair, A. S. Phys Chem Chem Phys 16:6838–6858

    Article  CAS  Google Scholar 

  4. McFarland EW (2014) Energy Environ Sci 7:846–854

    Article  CAS  Google Scholar 

  5. Kärkäs M, Johnston EV, Verho O, Åkermark B (2014) Acc Chem Res 47:100–111

    Article  Google Scholar 

  6. Sherman BD, Vaughn MD, Bergkamp JJ, Gust D, Moore AL, Moore TA (2014) Photosynth Res 120:59–70

    Article  CAS  Google Scholar 

  7. Wu L-Z, Chen B, Li Z-J, Tung C-H (2014) Acc Chem Res 47:2177–2185

    Article  CAS  Google Scholar 

  8. Frischmann PD, Mahata K, Würthner F (2013) Chem Soc Rev 42:1847–1870

    Article  CAS  Google Scholar 

  9. Gust D, Moore TA, Moore AL (2009) Acc Chem Res 42:1890–1898

    Article  CAS  Google Scholar 

  10. Fukuzumi S, Ohkubo K, Suenobu T (2014) Acc Chem Res 47:1455–1464

    Article  CAS  Google Scholar 

  11. Hoff AJ, Deisenhofer J (1997) Phys Rep 287:1–247

    Article  CAS  Google Scholar 

  12. Nelson N, Yocum CF (2006) Annu Rev Plant Biol 57:521–565

    Article  CAS  Google Scholar 

  13. Umena Y, Kawakami K, Shen J-R, Kamiya N (2011) Nature 473:55–61

    Article  CAS  Google Scholar 

  14. Yano J, Yachandra V (2014) Chem Rev 114:4175–4205

    Article  CAS  Google Scholar 

  15. Nelson N (2011) Biochim. Biophys Acta 1807:856–863

    CAS  Google Scholar 

  16. Scholes GD, Fleming GR, Olaya-Castro A, van Grondelle R (2011) Nat Chem 3:763–774

    Article  CAS  Google Scholar 

  17. El-Khouly ME, Fukuzumi S, D'Souza F (2014) ChemPhysChem 15:30–47

    Article  CAS  Google Scholar 

  18. Wasielewski MR (2009) Acc Chem Res 42:1910–1921

    Article  CAS  Google Scholar 

  19. Fukuzumi S, Ohkubo KJ (2012) Mater Chem 22:4575–4587

    Article  CAS  Google Scholar 

  20. Ito O, D'Souza F (2012) Molecules 17:5816–5835

    Article  CAS  Google Scholar 

  21. Fukuzumi S, Ohkubo K, D’Souza F, Sessler JL (2012) Chem Commun 48:9801–9815

    Article  CAS  Google Scholar 

  22. Bottari G, Trukhina O, Ince M, Torres T (2012) Coord Chem Rev 256:2453–2477

    Article  CAS  Google Scholar 

  23. D'Souza F, Ito O (2012) Chem Soc Rev 41:86–96

    Article  Google Scholar 

  24. Guldi DM, Sgobba V (2011) Chem Commun 47:606–610

    Article  CAS  Google Scholar 

  25. Wrobel D, Graja A (2011) Coord Chem Rev 255:2555–2577

    Article  CAS  Google Scholar 

  26. Lemmetyinen H, Tkachenko NV, Efimov A, Niemi M (2011) Phys Chem Chem Phys 13:397–412

    Article  CAS  Google Scholar 

  27. Ohkubo K, Fukuzumi S (2009) Bull Chem Soc Jpn 82:303–315

    Article  CAS  Google Scholar 

  28. Fukuzumi S, Kojima TJ (2008) Mater Chem 18:1427–1439

    Article  CAS  Google Scholar 

  29. Fukuzumi S (2008) Phys Chem Chem Phys 10:2283–2297

    Article  CAS  Google Scholar 

  30. Fukuzumi S, Ohkubo K (2013) Dalton Trans 42:15846–15858

    Article  CAS  Google Scholar 

  31. Iijima S, Yudasaka M, Yamada R, Bandow S, Suenaga K, Kokai F, Takahashi K (1999) Chem Phys Lett 309:165–170

    Article  CAS  Google Scholar 

  32. Vizuete M, Gómez-Escalonilla MJ, Fierro JLG, Yudasaka M, Iijima S, Vartanian M, Iehl J, Nierengarten J-F, Langa F (2011) Chem Commun 47:12771–12773

    Article  CAS  Google Scholar 

  33. Karousis N, Sato Y, Suenaga K, Tagmatarchis N (2012) Carbon 50:3909–3914

    Article  CAS  Google Scholar 

  34. Karousis N, Ichihashi T, Yudasaka M, Iijima S, Tagmatarchis N (2011) Chem Commun 47:1604–1606

    Article  CAS  Google Scholar 

  35. Dai L (2013) Acc Chem Res 46:31–42

    Article  CAS  Google Scholar 

  36. Sandanayaka ASD, Ito O, Tanaka T, Isobe H, Nakamura E, Yudasaka M, Iijima S (2009) New J Chem 33:2261–2266

    Article  CAS  Google Scholar 

  37. Zhu S, Xu G (2010) Nanoscale 2:2538–2549

    Article  CAS  Google Scholar 

  38. Vizuete M, Gómez-Escalonilla MJ, Fierro JLG, Ohkubo K, Fukuzumi S, Irie M, Yudasaka M, Iijima S, Nierengarten J-F, Langa F (2014) Chem Sci 5:2072–2080

    Article  CAS  Google Scholar 

  39. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Science 306:666–669

    Article  CAS  Google Scholar 

  40. Chabot V, Higgins D, Yu A, Xiao X, Chen Z, Zhang J (2014) Energy Environ Sci 7:1564–1596

    Article  CAS  Google Scholar 

  41. Chua CK, Pumera M (2014) Chem Soc Rev 43:291–312

    Article  CAS  Google Scholar 

  42. Li D, Müller MB, Gilje S, Kaner RB, Wallace GG (2008) Nat Nanotechnol 3:101–105

    Article  CAS  Google Scholar 

  43. Su Q, Pang S, Alijani V, Li C, Feng X, Müllen K (2009) Adv Mater 21:3191–3195

    Article  CAS  Google Scholar 

  44. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Carbon 45:1558–1565

    Article  CAS  Google Scholar 

  45. Banhart F, Kotakoski J, Krasheninnikov AV (2011) ACS Nano 5:26–41

    Article  CAS  Google Scholar 

  46. Wojcik A, Kamat PV (2010) ACS Nano 4:6697–6706

    Article  CAS  Google Scholar 

  47. Geng J, Jung H-TJ (2010) Phys Chem C 114:8227–8234

    Article  CAS  Google Scholar 

  48. Lightcap IV, Kamat PV (2013) Acc Chem Res 46:2235–2243

    Article  CAS  Google Scholar 

  49. Chang H, Wu H (2013) Energy Environ Sci 6:3483–3507

    Article  CAS  Google Scholar 

  50. Tang Q, Zhou Z, Chen Z (2013) Nanoscale 5:4541–4583

    Article  CAS  Google Scholar 

  51. Supur M, Ohkubo K, Fukuzumi S (2014) Chem Commun 50:13359–13361

    Google Scholar 

  52. Supur M, Fukuzumi S (2012) J Phys Chem C 116:23274

    Article  CAS  Google Scholar 

  53. Supur M, Fukuzumi S (2013) Phys Chem Chem Phys 15:2539

    Article  CAS  Google Scholar 

  54. Yeow EKL, Ghiggino KP, Reek JNH, Crossley MJ, Bosman AW, Schenning APH, Meijer EW (2000) J Phys Chem B 104:2596

    Article  CAS  Google Scholar 

  55. Ballester P, Gomila RM, Hunter CA, King ASH, Twyman LJ (2003) Chem Commun 38–39

    Google Scholar 

  56. Zhang G-D, Nishiyama N, Harada A, Jiang D-L, Aida T, Kataoka K (2003) Macromolecules 36:1304

    Article  CAS  Google Scholar 

  57. Frampton MJ, Magennis SW, Pillow JNG, Burn PL, Samuel IDW (2003) J Mater Chem 13:235

    Article  CAS  Google Scholar 

  58. Kim Y, Mayer MF, Zimmerman SC (2003) Angew Chem Int Ed 42:1121

    Article  CAS  Google Scholar 

  59. Hasobe T, Kashiwagi Y, Absalom MA, Sly J, Hosomizu K, Crossley MJ, Imahori H, Kamat PV, Fukuzumi S (2004) Adv Mater 16:975

    Article  CAS  Google Scholar 

  60. Hasobe T, Kamat PV, Absalom MA, Kashiwagi Y, Sly J, Crossley MJ, Hosomizu K, Imahori H, Fukuzumi S (2004) J Phys Chem B 108:12865

    Article  CAS  Google Scholar 

  61. Larsen J, Brüggemann B, Polívka T, Sundström V, Åkesson E, Sly J, Crossley MJ (2005) J Phys Chem A 109:10654

    Article  CAS  Google Scholar 

  62. Cho S, Li W-S, Yoon M-C, Ahn TK, Jiang D-L, Kim J, Aida T, Kim D (2006) Chem Eur J 12:7576

    Google Scholar 

  63. Larsen J, Brüggemann B, Khoury T, Sly J, Crossley MJ, Sundström V, Åkesson E (2007) J Phys Chem A 111:10589

    Article  CAS  Google Scholar 

  64. Zhang X, Zeng Y, Yu T, Chen J, Yang G, Li YJ (2014) Phys Chem Lett 5:2340–2350

    Article  CAS  Google Scholar 

  65. D'Souza F, Deviprasad GR, Zandler ME, Hoang VT, Klykov A, VanStipdonk M, Perera A, El-Khouly ME, Fujitsuka M, Ito O (2002) J Phys Chem A 106:3243

    Article  Google Scholar 

  66. Fukuzumi S, Saito K, Kashiwagi Y, Crossley MJ, Gadde S, D’Souza F, Araki Y, Ito O (2011) Chem Commun 47:7980–7982

    Article  CAS  Google Scholar 

  67. Fukuzumi S, Ohkubo K, Saito K, Kashiwagi Y, Crossley MJJ (2011) J Porphyr Phthalocyanines 15:1292–1298

    Article  CAS  Google Scholar 

  68. Sanders JKM, Bampos N, Clyde-Watson Z, Darling SL, Hawley JC, Kim H-J, Mak CC, Webb SJ (2000) In: Kadish KM, Smith KM, Guilard R (eds) The porphyrin handbook, vol 3. Academic, New York, pp 1–48

    Google Scholar 

  69. Solladié N, Hamel A, Gross M (2000) Tetrahedron Lett 41:6075–6078

    Article  Google Scholar 

  70. Saito K, Qiu H, Troiani V, Solladié N, Sakata T, Mori H, Ohama M, Fukuzumi SJ (2007) Phys Chem C 111:1194–1199

    Article  CAS  Google Scholar 

  71. Hasobe T, Saito K, Kamat PV, Troiani V, Qiu H, Solladié N, Ahn TK, Kim KS, Kim SK, Kim D, D'Souza F, Fukuzumi SJ (2007) Mater Chem 17:4160–4170

    Article  CAS  Google Scholar 

  72. Fujitsuka M, Cho DW, Solladié N, Troiani V, Qiu H, Majima TJ (2007) J Photochem Photobiol A Chem 188:346–350

    Article  CAS  Google Scholar 

  73. Fukuzumi S, Saito K, Ohkubo K, Troiani V, Qiu H, Gadde S, D'Souza F, Solladié N (2011) Phys Chem Chem Phys 13:17019–17022

    Article  CAS  Google Scholar 

  74. D’Souza F, Smith PM, Gadde S, McCarty AL, Kullman MJ, Zandler ME, Itou M, Araki Y, Ito OJ (2004) Phys Chem B 108:11333–11343

    Article  Google Scholar 

  75. Imahori H, Guldi DM, Tamaki K, Yoshida Y, Luo C, Sakata Y, Fukuzumi SJ (2001) Am Chem Soc 123:6617–6628

    Article  CAS  Google Scholar 

  76. Imahori H, Sekiguchi Y, Kashiwagi Y, Sato T, Araki Y, Ito O, Yamada H, Fukuzumi S (2004) Chem Eur J 10:3184–3196

    Article  CAS  Google Scholar 

  77. Guldi DM, Imahori H, Tamaki K, Kashiwagi Y, Yamada H, Sakata Y, Fukuzumi SJ (2004) Phys Chem A 108:541–548

    Article  CAS  Google Scholar 

  78. Fukuzumi S, Kotani H, Ohkubo K, Ogo S, Tkachenko NV, Lemmetyinen HJ (2004) Am Chem Soc 126:1600–1601

    Article  CAS  Google Scholar 

  79. Ohkubo K, Kotani H, Fukuzumi S (2005) Chem Commun 4520–4522

    Google Scholar 

  80. Murakami M, Ohkubo K, Fukuzumi S (2010) Chem Eur J 16:7820–7832

    Article  CAS  Google Scholar 

  81. Murakami M, Ohkubo K, Nanjo T, Souma K, Suzuki N, Fukuzumi S (2010) ChemPhysChem 11:2594–2605

    Article  CAS  Google Scholar 

  82. Fukuzumi S, Doi K, Suenobu T, Ohkubo K, Yamada Y, Karlin KD (2012) Proc Natl Acad Sci U S A 109:15572–15577

    Article  CAS  Google Scholar 

  83. Bill NL, Ishida M, Kawashima Y, Ohkubo K, Sung YM, Lynch VM, Lim JM, Kim D, Sessler JL, Fukuzumi S (2014) Chem Sci 5:3888–3896

    Article  CAS  Google Scholar 

  84. Honda T, Nakanishi T, Ohkubo K, Kojima T, Fukuzumi SJ (2010) Am Chem Soc 132:10155–10163

    Article  CAS  Google Scholar 

  85. Fukuzumi S, Ohkubo K, Kawashima Y, Kim DS, Park JS, Jana A, Lynch VM, Kim D, Sessler JLJ (2011) Am Chem Soc 133:15938–15941

    Article  CAS  Google Scholar 

  86. Ohkubo K, Kawashima Y, Fukuzumi S (2012) Chem Commun 48:4314–4316

    Article  CAS  Google Scholar 

  87. Kawashima Y, Ohkubo K, Mase K, Fukuzumi SJ (2013) Phys Chem C 117:21166–21177

    Article  CAS  Google Scholar 

  88. Sessler JL, Karnas E, Kim SK, Ou Z, Zhang M, Kadish KM, Ohkubo K, Fukuzumi SJ (2008) Am Chem Soc 130:15256–15257

    Article  CAS  Google Scholar 

  89. Fukuzumi S, Mase K, Ohkubo K, Karnas E, Kim SK, Ou Z, Zhang M, Kadish KM, Sessler JLJ (2014) Phys Chem C 118:18436–18444

    Article  Google Scholar 

  90. Marcus RA, Sutin N (1985) Biochim Biophys Acta 811:265–322

    Article  CAS  Google Scholar 

  91. Ohkubo K, Kawashima Y, Sakai H, Hasobe T, Fukuzumi S (2013) Chem Commun 49:4474–4476

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author gratefully acknowledges the contributions of their collaborators and coworkers mentioned in the cited references and support by a Grant-in-Aid (No. 20108010 to SF) from MEXT, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shunichi Fukuzumi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Fukuzumi, S. (2015). Photoinduced Electron-Transfer Functions of π-Electron Donor–Acceptor Supramolecular Complexes. In: Akasaka, T., Osuka, A., Fukuzumi, S., Kandori, H., Aso, Y. (eds) Chemical Science of π-Electron Systems. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55357-1_31

Download citation

Publish with us

Policies and ethics