Skip to main content

Integrated π-Electron Systems on Artificial Cell Membranes

  • Chapter
Chemical Science of π-Electron Systems

Abstract

Highly elaborated π-spaces were constructed on lipid bilayer membranes by self-organization of functional π-conjugated molecules. The resulting artificial cell membranes showed dynamic performance as supramolecular devices mimicking information processing in biological systems. Membrane trafficking, including synthetic cell division and propagation of molecular capsule from sender to receiver vesicles, was achieved using π-conjugated molecules as a molecular signal or artificial receptor, respectively. Thermoresponsive and photoresponsive signal transduction behaviors were observed on supramolecular lipid bilayer membranes containing an artificial receptor with functional π-conjugated moiety, an enzyme as a signal amplifier, and a mediator species between the receptor and enzyme. The results indicated that lipid bilayer membranes are highly sophisticated platforms that can exhibit the potential of π-conjugated molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andes-Koback M, Keating CD (2011) Complete budding and asymmetric division of primitive model cells to produce daughter vesicles with different interior and membrane compositions. J Am Chem Soc 133:9545–9555

    Article  CAS  Google Scholar 

  2. Balzani V, Credi A, Venturi M (2008) Molecular devices and machines: concepts and perspectives for the nanoworld, 2nd edn. Wiley-VCH, Weinheim

    Book  Google Scholar 

  3. Behnia R, Munro S (2005) Organelle identity and the signposts for membrane traffic. Nature 438:597–604

    Article  CAS  Google Scholar 

  4. Fendler J, Hinze WL (1981) Reactivity control in micelles and surfactant vesicles – kinetics and mechanism of base-catalyzed-hydrolysis of 5,5’-dithiobis(2-nitrobenzoic acid) in water. J Am Chem Soc 103:5439–5447

    Article  CAS  Google Scholar 

  5. Glaser PE, Gross RW (1994) Plasmenylrthanolamine facilitates rapid membrane fusion: A stopped flow kinetic investigation correlating the propensity of a major plasma membrane constituent to adopt an HII phase with its ability to promote membrane fusion. Biochemistry 33:5805–5812

    Article  CAS  Google Scholar 

  6. Hamada T, Miura Y, Ishii K, Atraki S, Yoshikawa K, Vestergaard M, Takagi M (2007) Dynamic processes in endocytic transformation of a raft-exhibiting giant liposome. J Phys Chem B111:10853–10857

    Article  Google Scholar 

  7. Hashizume M, Kawanami S, Iwamoto S, Isomoto T, Kikuchi J (2003) Stable vesicular nanoparticle ‘cerasome’ as an organic-inorganic hybrid formed with organoalkoxysilane lipids having a hydrogen-bonding unit. Thin Solid Films 438–439:20–26

    Article  Google Scholar 

  8. Heimburg T (2007) Thermal biophysics of membranes. Wiley-VCH, Weinheim

    Book  Google Scholar 

  9. Hoch FL (1992) Cardiolipins and biomembrane function. Biochim Biophys Acta 1113:71–133

    Article  CAS  Google Scholar 

  10. Ikeda A, Matsumoto M, Akiyama M, Kikuchi J, Ogawa T, Takeya T (2009) Direct and short-time uptake of [70]fullerene into the cell membrane using an exchange reaction from a [70]fullerene-γ-cyclodextrin complex and the resulting photodynamic activity. Chem Commun 12:1547–1549

    Article  Google Scholar 

  11. Iwamoto S, Otsuki M, Sasaki Y, Ikeda A, Kikuchi J (2004) Gemini peptide lipids with ditopic ion-recognition site. Preparation and functions as an inducer for assembling of liposomal membranes. Tetrahedron 60:9841–9847

    Article  CAS  Google Scholar 

  12. Kano K, Fendler J (1978) Pyranine as a sensitive pH probe for liposome interiors and surfaces. pH gradients across phospholipid vesicles. Biochim Biophys Acta 509:289–299

    Article  CAS  Google Scholar 

  13. Keren-Zur M, Beigel M, Loyter A (1989) Induction of fusion in aggregated and nonaggregated liposomes bearing cationic detergents. Biochim Biophys Acta 983:253–258

    Article  CAS  Google Scholar 

  14. Kikuchi J, Yasuhara K (2011) Cerasomes: a new family of artificial cell membranes with ceramic surface. In: George A (ed) Advances in biomimetics. Intech, Rijeka

    Google Scholar 

  15. Kikuchi J, Yasumhara K (2012) Transmission electron microscopy (TEM). In: Gale PA, Steed JW (eds) Supramolecular chemistry from molecules to nanomaterials, vol 2. Wiley, Chichester, pp 633–645

    Google Scholar 

  16. Kikuchi J, Ariga K, Sasaki Y (2002) Molecular recognition and functional connection in lipid membranes. In: Gokel GW (ed) Advances in supramolecular chemistry, vol 8. Cerberus Press, Miami, pp 131–173

    Google Scholar 

  17. Krauss G (2003) Biochemistry of signal transduction and regulation. Wiley-VCH, Weinheim

    Book  Google Scholar 

  18. Matsui K, Sando S, Sera T, Aoyama Y, Sasaki Y, Komatsu T, Terashima T, Kikuchi J (2006) Cerasome as an infusible, cell-friendly, and Serum-compatible transfection agent in a viral size. J Am Chem Soc 128:3114–3115

    Article  CAS  Google Scholar 

  19. Matsui K, Sasaki Y, Komatsu T, Mukai M, Kikuchi J, Aoyama Y (2007) RNAi gene silencing using cerasome as a viral-size siRNA-carrier free from fusion and cross-linking. Bioorg Med Chem Lett 17:3935–3938

    Article  CAS  Google Scholar 

  20. Menger FM, Keiper JS (2000) Gemini surfactants. Angew Chem Int Ed 39:1907–1920

    Article  CAS  Google Scholar 

  21. Mukai M, Marui K, Kikuchi J, Sasaki Y, Hiyama S, Moritani Y, Suda T (2009) Propagation and amplification of molecular information using a photo-responsive molecular switch. Supramol Chem 21:284–291

    Article  CAS  Google Scholar 

  22. Mukai M, Sasaki Y, Kikuchi J (2012) Fusion-triggered switching of enzymatic activity on artificial cell membrane. Sensors 12:5966–5977

    Article  CAS  Google Scholar 

  23. Mukai M, Maruo K, Sasaki Y, Kikuchi J (2012) Intermolecular communication on a liposomal membrane. Enzymatic amplification of a photonic signal with gemini peptide lipid as a membrane-bound artificial receptor. Chem Eur J 18:3253–3263

    Article  Google Scholar 

  24. Murakami Y, Kikuchi J (1991) Supramolecular assemblies formed with synthetic peptide lipids. Functional models of biomembranes and enzymes. In: Dugas H (ed) Bioorganic chemistry frontiers, vol 2. Springer, Berlin, pp 73–113

    Chapter  Google Scholar 

  25. Noble GT, Mart RJ, Liem KP, Webb SJ (2012) Supramolecular chemistry of membranes. In: Gale PA, Steed JW (eds) Supramolecular chemistry from molecules to nanomaterials, vol 4. Wiley, Chichester, pp 1731–1749

    Google Scholar 

  26. Otsuki M, Sasaki Y, Iwamoto S, Kikuchi J (2006) Liposomal sorting onto substrate through ion recognition by gemini peptide lipids. Chem Lett 35:206–207

    Article  CAS  Google Scholar 

  27. Qiao Y, Tahara K, Zhang Q, Song XM, Hisaeda Y, Kikuchi J (2014) Construction of molecular communication interface formed from cerasome and hydrophobic vitamin B12 on glassy carbon electrode. Chem Lett 43:684–686

    Article  CAS  Google Scholar 

  28. Sasaki Y, Matsui K, Aoyama Y, Kikuchi J (2006) Cerasome as an infusible and cell-friendly gene carrier: synthesis of cerasome-forming lipids and transfection using cerasome. Nat Protoc 1:1227–1234

    Article  CAS  Google Scholar 

  29. Sasaki Y, Iwamoto S, Mukai M, Kikuchi J (2006) Photo- and thermo-responsive assembly of liposomal membranes triggered by a gemini peptide lipid as a molecular switch. J Photochem Photobiol A Chem 183:309–314

    Article  CAS  Google Scholar 

  30. Schlame M, Rua G, Greenberg ML (2000) The biosynthesis and functional role of cardiolipin. Prog Lipid Res 39:257–288

    Article  CAS  Google Scholar 

  31. Simons K (ed) (2011) The biology of lipids: trafficking, regulation, and function. Cold Spring Harbor Lab Press, New York

    Google Scholar 

  32. Sommerdijk NAJM, Hoeks THL, Synak M, Feiters MC, Nolte RJM, Zwaneburg M (1997) Stereodependent fusion and fission of vesicles: calcium binding of synthetic gemini phospholipids containing two phosphate groups. J Am Chem Soc 119:4338–4344

    Article  CAS  Google Scholar 

  33. Staneva G, Seigneuret M, Koumanov K, Trugnan G, Angelova MI (2005) Detergents induce raft-like domains budding and fission from giant unilamellar heterogeneous vesicles – a direct microscopy observation. Chem Phys Lipids 136:55–66

    Article  CAS  Google Scholar 

  34. Stillwell W (2013) An introduction to biological membranes from bilayers to rafts. Academic, London

    Google Scholar 

  35. Szostak JW, Bartel DP, Luisi PL (2001) Synthesizing life. Nature 409:387–390

    Article  CAS  Google Scholar 

  36. Tahara K, Moriuchi T, Tsukui M, Hirota A, Maeno T, Toriyama M, Inagaki N, Kikuchi J (2013) Ceramic coating of liposomal gene carrier for minimizing toxicity to primary hippocampal neurons. Chem Lett 42:1265–1267

    Article  CAS  Google Scholar 

  37. Takakura K, Sugawara T (2004) Membrane dynamics of a myelin-like giant multilamellar vesicle applicable to a self-reproducing system. Langmuir 20:3832–3834

    Article  CAS  Google Scholar 

  38. Tian WJ, Sasaki Y, Fan SD, Kikuchi J (2005) Intermolecular communication on lipid bilayer membrane. Tuning of enzymatic activity with phase transition of the matrix membranes. Bull Chem Soc Jpn 78:715–717

    Article  CAS  Google Scholar 

  39. Torchilin VP, Weissig V (2003) Liposomes, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  40. Wang Z, Yasuhara K, Ito H, Mukai M, Kikuchi J (2010) Budding and fission of cationic binary lipid vesicles induced by the incorporation of pyranine. Chem Lett 39:54–55

    Article  Google Scholar 

  41. Waser R (ed) (2003) Nanoelectronics and information technology: advanced electronic materials and novel devices. Wiley-VCH, Weinheim

    Google Scholar 

  42. Yamashita Y, Masum SM, Tanaka T, Yamazaki M (2002) Shape changes of giant unilamellar vesicles of phosphatidylcholine induced by a de novo designed peptide interacting with their membrane interface. Langmuir 18:9638–9641

    Article  CAS  Google Scholar 

  43. Yasuhara K, Miki S, Nakazono H, Ohta A, Kikuchi J (2011) Synthesis of organic-inorganic hybrid bicelles. Lipid bilayer nanodiscs encompassed by siloxane surfaces. Chem Commun 47(16):4691–4692

    Article  CAS  Google Scholar 

  44. Zana R, Xia J (eds) (2004) Gemini surfactants. Marcel Dekker, New York

    Google Scholar 

  45. Zuidam NJ, Barenholz Y (1997) Electrostatic parameters of cationic liposomes commonly used for gene delivery as determined by 4-heptadecyl-7-hydroxycoumarin. Biochim Biophys Acta 1329:211–222

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-ichi Kikuchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Kikuchi, Ji., Yasuhara, K., Tahara, K. (2015). Integrated π-Electron Systems on Artificial Cell Membranes. In: Akasaka, T., Osuka, A., Fukuzumi, S., Kandori, H., Aso, Y. (eds) Chemical Science of π-Electron Systems. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55357-1_27

Download citation

Publish with us

Policies and ethics