Skip to main content

Supramolecular Structures and Photoelectronic Properties of π-Complexes Composed of Self-Assembling Cyclic Porphyrin Dimers and Fullerenes

  • Chapter
Chemical Science of π-Electron Systems

Abstract

We have prepared nickel complexes and freebases of cyclic porphyrin dimers linked by butadiyne or phenothiazine groups. The porphyrin dimers have self-assembling pyridyl groups at the opposite meso positions and include fullerenes such as C60, PCBM, C70, and Li+@C60 to give π-complexes. In particular, the phenothiazine-bridged cyclic porphyrin dimers exhibit notable high affinities toward C60 (K assoc > 106 M−1) and C70 (K assoc > 107 M−1). In the crystal structures, the π-complexes of C60 and PCBM within the butadiyne-bridged nickel dimer and the phenothiazine-bridged freebase dimer afford self-assembled porphyrin nanotubes containing the linear arrays of the fullerenes. These self-assemblies are formed by the C-H · · · N hydrogen bonds and π-π interactions of the meso pyridyl groups. On the other hand, the π-complexes of C60 and C70 within the butadiyne-bridged freebase dimer gave the zigzag chains of the fullerenes through van der Waals contacts with each fullerene. These well-ordered C60 arrays yield high electron mobilities (Σμ > 10−1 cm2V−1 s−1). The π-complexes of C60 and Li+@C60 within the butadiyne-bridged dimers perform photoinduced electron transfer from the porphyrins to the fullerenes to give the CS states. The π-complexes of Li+@C60 with the butadiyne-bridged dimers afford the CS states of remarkably long lifetimes reaching submillisecond order.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lehn JM (1995) Supramolecular chemistry: concepts and perspectives. Weinheim, Wiley-VCH

    Book  Google Scholar 

  2. Shimizu T, Masuda M, Minamikawa H (2005) Supramolecular nanotube architectures based on amphiphilic molecules. Chem Rev 105:1401–1444

    Article  CAS  Google Scholar 

  3. Pasini D, Ricci M (2007) Macrocycles as precursors for organic nanotubes. Curr Org Synth 4:59–80

    Article  CAS  Google Scholar 

  4. Boyd PDW, Reed CA (2005) Fullerene−porphyrin constructs. Acc Chem Res 38:235–242

    Article  CAS  Google Scholar 

  5. Tashiro K, Aida T (2007) Metalloporphyrin hosts for supramolecular chemistry of fullerenes. Chem Soc Rev 36:189–197

    Article  CAS  Google Scholar 

  6. Canevet D, Pérez EM, Martín N (2011) Wraparound hosts for fullerenes: tailored macrocycles and cages. Angew Chem Int Ed 50:9248–9259

    Article  CAS  Google Scholar 

  7. Kadish KM, Ruoff RS (eds) (2000) Fullerenes: chemistry physics and technology. Wiley Interscience, New York

    Google Scholar 

  8. Guldi DM, Martín N (eds) (2002) Fullerenes: from synthesis to optoelectronic properties. Kluwer, Dordrecht

    Google Scholar 

  9. Fukuzumi S, Guldi DM (2001) Electron-transfer chemistry of fullerenes. In: Balzani V (ed) Electron transfer in chemistry, vol 2. Wiley-VCH, Weinheim, pp 270–337

    Chapter  Google Scholar 

  10. Hirsch A, Brettreich M (2005) Fullerenes: chemistry and reactions. Wiley-VCH, Weinheim

    Google Scholar 

  11. Langa F, Nierengarten J-F (eds) (2012) Fullerenes: principles and applications, 2nd edn. Royal Society of Chemistry Publishing, Cambridge

    Google Scholar 

  12. Kadish KM, Smith KM, Guilard R (eds) (2000) The porphyrin handbook. Academic, San Diego

    Google Scholar 

  13. Kadish KM, Smith KM, Guilard R (eds) (2010) Handbook of porphyrin science. World Scientific, Singapore

    Google Scholar 

  14. Fukuzumi S, Ohkubo K (2013) Long-lived photoinduced charge separation for solar cell applications in supramolecular complexes of multi-metalloporphyrins and fullerenes. Dalton Trans 42:15846–15858

    Article  CAS  Google Scholar 

  15. Schuster DI (2013) Reflections on a fifty-year career in organic photochemistry: a personal perspective. J Org Chem 78:6811–6841

    Article  CAS  Google Scholar 

  16. Gust D, Moore TA, Moore TL (2012) Realizing artificial photosynthesis. Faraday Discuss 155:9–26

    Article  CAS  Google Scholar 

  17. Imahori H, Umeyama T, Kurotobi K, Takano Y (2012) Self-assembling porphyrins and phthalocyanines for photoinduced charge separation and charge transport. Chem Commun 48:4032–4045

    Article  CAS  Google Scholar 

  18. D’Souza F, Ito O (2012) Photosensitized electron transfer processes of nanocarbons applicable to solar cells. Chem Soc Rev 41:86–96

    Article  Google Scholar 

  19. Kira A, Umeyama T, Matano Y, Yoshida K, Isoda S, Park JK, Kim D, Imahori H (2009) Supramolecular donor-acceptor heterojunctions by vectorial stepwise assembly of porphyrins and coordination-bonded fullerene arrays for photocurrent generation. J Am Chem Soc 131:3198–3200

    Article  CAS  Google Scholar 

  20. Matsuo Y, Sato Y, Niinomi T, Soga I, Tanaka H, Nakamura E (2009) Columnar structure in bulk heterojunction in solution-processable three-layered p-i-n organic photovoltaic devices using tetrabenzoporphyrin precursor and silylmethyl[60]fullerene. J Am Chem Soc 131:16048–16050

    Article  CAS  Google Scholar 

  21. Moon JS, Lee JK, Cho S, Byun J, Heeger AJ (2009) “Columnlike” structure of the cross-sectional morphology of bulk heterojunction materials. Nano Lett 9:230–234

    Article  CAS  Google Scholar 

  22. Hoppe H, Sariciftci NS (2006) Morphology of polymer/fullerene bulk heterojunction solar cells. J Mater Chem 16:45–61

    Article  CAS  Google Scholar 

  23. Nobukuni H, Shimazaki Y, Tani F, Naruta Y (2007) A nanotube of cyclic porphyrin dimers connected by nonclassical hydrogen bonds and its inclusion of C60 in a linear arrangement. Angew Chem Int Ed 46:8975–8978

    Article  CAS  Google Scholar 

  24. Nobukuni H, Tani F, Shimazaki Y, Naruta Y, Ohkubo K, Nakanishi T, Kojima T, Fukuzumi S, Seki S (2009) Anisotropic high electron mobility and photodynamics of a self-assembled porphyrin nanotube including C60 molecules. J Phys Chem C 113:19694–19699

    Article  CAS  Google Scholar 

  25. Nobukuni H, Shimazaki Y, Uno H, Naruta Y, Ohkubo K, Kojima T, Fukuzumi S, Seki S, Sakai H, Hasobe T, Tani F (2010) Supramolecular structures and photoelectronic properties of the inclusion complex of a cyclic free-base porphyrin dimer and C60. Chem Eur J 16:11611–11623

    Article  CAS  Google Scholar 

  26. Nobukuni H, Kamimura T, Uno H, Shimazaki Y, Naruta Y, Tani F (2011) Supramolecular structures of inclusion complexes of C70 and cyclic porphyrin dimers. Bull Chem Soc Jpn 84:1321–1328

    Article  CAS  Google Scholar 

  27. Nobukuni H, Kamimura T, Uno H, Shimazaki Y, Naruta Y, Tani F (2012) Supramolecular structures of inclusion complexes of cyclic porphyrin dimers and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). Bull Chem Soc Jpn 85:862–868

    Article  CAS  Google Scholar 

  28. Kamimura T, Ohkubo K, Kawashima Y, Nobukuni H, Naruta Y, Tani F, Fukuzumi S (2013) Submillisecond-lived photoinduced charge separation in inclusion complexes composed of Li + @C60 and cyclic porphyrin dimers. Chem Sci 4:1451–1461

    Article  CAS  Google Scholar 

  29. Sakaguchi K, Kamimura T, Uno H, Mori S, Ozako S, Nobukuni H, Ishida M, Tani F (2014) Phenothiazine-bridged cyclic porphyrin dimers as high-affinity hosts for fullerenes and linear array of C60 in Self-assembled porphyrin nanotube. J Org Chem 79:2980–2992

    Article  CAS  Google Scholar 

  30. Tani F, Nobukuni H, Kamimura T (2013) Finely designed arrangements and photoelectronic properties of supramolecular nanocarbons composed of fullerenes and cyclic porphyrin dimers. Tanso 260:284–291. http://dx.doi.org/10.7209/tanso.2013.284

  31. David WIF, Ibberson RM, Matthewman JC, Prassides K, Dennis TJS, Hare JP, Kroto HW, Taylor R, Walton DRM (1991) Crystal structure and bonding of ordered C60. Nature 353:147–149

    Article  CAS  Google Scholar 

  32. McKenzie DR, Davis CA, Cockayne DJH, Muller DA, Vassallo AM (1992) The structure of the C70 molecule. Nature 355:622–624

    Article  CAS  Google Scholar 

  33. Saeki A, Koizumi Y, Aida T, Seki S (2012) Comprehensive approach to intrinsic charge carrier mobility in conjugated organic molecules, macromolecules, and supramolecular architectures. Acc Chem Res 45:1193–1202

    Article  CAS  Google Scholar 

  34. Peet J, Heeger AJ, Bazan AC (2009) “Plastic” solar cells: self-assembly of bulk heterojunction nanomaterials by spontaneous phase separation. Acc Chem Res 42:1700–1708

    Article  CAS  Google Scholar 

  35. Thompson BC, Fréchet JMJ (2008) Polymer–fullerene composite solar cells. Angew Chem Int Ed 47:58–77

    Article  CAS  Google Scholar 

  36. Günes S, Neugebauer H, Sariciftci NS (2007) Conjugated polymer-based organic solar cells. Chem Rev 107:1324–1338

    Article  Google Scholar 

  37. Rispens MT, Meetsma A, Rittberger R, Brabec CJ, Sariciftci NS, Hummelen JC (2003) Influence of the solvent on the crystal structure of PCBM and the efficiency of MDMO-PPV:PCBM ‘plastic’ solar cells. Chem Commun 2116–2118

    Google Scholar 

  38. Choi JH, Honda T, Seki S, Fukuzumi S (2011) Relationship between crystal packing and high electron mobility in the single crystal of thienyl-substituted methanofullerene. Chem Commun 47:11213–11215

    Article  CAS  Google Scholar 

  39. Wang Y-B, Lin Z (2003) Supramolecular interactions between fullerenes and porphyrins. J Am Chem Soc 125:6072–6073

    Article  CAS  Google Scholar 

  40. Goldoni A, Cepek C, Larciprete R, Sangaletti L, Pagliara S, Floreano L, Gotter R, Verdini A, Morgante A, Luo Y, Nyberg M (2002) C70 adsorbed on Cu(111): metallic character and molecular orientation. J Chem Phys 116:7685–7690

    Article  CAS  Google Scholar 

  41. Okubo S, Okazaki T, Hirose-Takai K, Suenaga K, Okada S, Bandow S, Iijima S (2010) Electronic structures of single-walled carbon nanotubes encapsulating ellipsoidal C70. J Am Chem Soc 132:15252–15258

    Article  CAS  Google Scholar 

  42. Ishii T, Aizawa N, Kanehama R, Yamashita M, Sugiura K, Miyasaka H (2002) Cocrystallites consisting of metal macrocycles with fullerenes. Coord Chem Rev 226:113–124

    Article  CAS  Google Scholar 

  43. Aoyagi S, Nishibori E, Sawa H, Sugimoto K, Takata M, Miyata Y, Kitaura R, Shinohara H, Okada H, Sakai T, Ono Y, Kawachi K, Yokoo K, Ono S, Omote K, Kasama Y, Ishikawa S, Komuro T, Tobita H (2010) A layered ionic crystal of polar Li@C60 superatoms. Nat Chem 2:678–683

    Google Scholar 

  44. Kawashima Y, Ohkubo K, Fukuzumi S (2012) Enhanced photoinduced electron-transfer reduction of Li+@C60 in comparison with C60. J Phys Chem A 116:8942–8948

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants-in-Aid (Scientific Research on Innovative Area “pi-Space” and the Global COE Program “Science for Future Molecular Systems”) from the Ministry of Education, Culture, Sports, Science and Technology of Japan; by the Cooperative Research Program of Network Joint Research Center for Materials and Devices of Institute for Materials Chemistry and Engineering, Kyushu University; and by Research Grants to F.T. from Tokuyama Science and Technology Foundation and Iketani Science and Technology Foundation. H.N. acknowledges the Japan Society for the Promotion of Science (JSPS) for a Research Fellowship for Young Scientists. We are sincerely grateful to our coworkers for their kind cooperation whose names appear as coauthors in our papers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fumito Tani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Tani, F., Nobukuni, H., Sakaguchi, Ki., Kamimura, T. (2015). Supramolecular Structures and Photoelectronic Properties of π-Complexes Composed of Self-Assembling Cyclic Porphyrin Dimers and Fullerenes. In: Akasaka, T., Osuka, A., Fukuzumi, S., Kandori, H., Aso, Y. (eds) Chemical Science of π-Electron Systems. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55357-1_25

Download citation

Publish with us

Policies and ethics