Skip to main content

Organic Chemistry of Graphene Framework

  • Chapter
Chemical Science of π-Electron Systems

Abstract

Graphene, a sheet of carbon atoms arranged in a honeycomb lattice, has attracted much attention from chemists, physicists, and material scientists, because their peculiar electronic properties promise novel functions that radically change our lives in the coming years. Great contribution of physics has been disclosing electronic structures of graphene, whereas some of them can be understood by bottom-up approach, that is, by relating to chemistry of polycyclic aromatic hydrocarbons. This chapter mainly focuses on the origin of the magnetic properties of polycyclic aromatic hydrocarbons in terms of aromatic sextet formation and spin localization, in relation to “edge state” of graphene and graphene nanoribbons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsovet AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Article  CAS  Google Scholar 

  2. Neto AHC, Guinea F, Peres NMR, Novoselov KS, Geim AK (2009) The electronic properties of graphene. Rev Mod Phys 81:109–162

    Article  Google Scholar 

  3. Enoki T, Takai K, Kiguchi M (2012) Magnetic edge state of nanographene and unconventional nanographene-based host-guest systems. Bull Chem Soc J 85:249–264

    Article  CAS  Google Scholar 

  4. Baringhaus J, Ruan M, Edler F, Tejeda A, Sicot M, Taleb-Ibrahimi A, Li AP, Jiang Z, Conrad EH, Berger C, Tegenkamp C, De Heer WA (2014) Exceptional ballistic transport in epitaxial graphene nanoribbons. Nature 506:349–354

    Article  CAS  Google Scholar 

  5. Berger C, Song Z, Li T, Li X, Ogbazghi AY, Feng R, Dai Z, Marchenkov AN, Conrad EH, First PN, de Heer WA (2004) Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J Phys Chem B 108:19912–19916

    Article  CAS  Google Scholar 

  6. Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438:197–200

    Article  CAS  Google Scholar 

  7. Gusynin VP, Sharapov SG (2005) Unconventional integer quantum hall effect in graphene. Phys Rev Lett 95:146801

    Article  CAS  Google Scholar 

  8. Zhang Y, Tan YW, Stormer HL, Kim P (2005) Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438:201–204

    Article  CAS  Google Scholar 

  9. Sharapov SG, Gusynin VP, Beck H (2004) Magnetic oscillations in planar systems with the Dirac-like spectrum of quasiparticle excitations. Phys Rev B 69:075104

    Article  Google Scholar 

  10. Fukuyama H (2007) Anomalous orbital magnetism and Hall effect of massless fermions in two dimension. J Phys Soc Jpn 76:043711

    Article  Google Scholar 

  11. Koshino M, Ando T (2007) Diamagnetism in disordered graphene. Phys Rev B 75:235333

    Article  Google Scholar 

  12. Koshino M, Ando T (2007) Orbital diamagnetism in multilayer graphenes: systematic study with the effective mass approximation. Phys Rev B 76:085425

    Article  Google Scholar 

  13. Nakamura M, Hirasawa L (2008) Electric transport and magnetic properties in multilayer graphene. Phys Rev B 77:045429

    Article  Google Scholar 

  14. Koshino M, Arimura Y, Ando T (2009) Magnetic field screening and mirroring in graphene. Phys Rev Lett 102:177203

    Article  Google Scholar 

  15. Loh KP, Bao QL, Ang PK, Yang JX (2010) The chemistry of graphene. J Mater Chem 20:2277–2289

    Article  CAS  Google Scholar 

  16. Bekyarova E, Sarkar S, Niyogi S, Itkis ME, Haddon RC (2012) Advances in the chemical modification of epitaxial graphene. J Phys D Appl Phys 45:154009

    Article  Google Scholar 

  17. Sarkar S, Bekyarova E, Haddon RC (2012) Covalent chemistry in graphene electronics. Materialstoday 15:276–285

    CAS  Google Scholar 

  18. Tanaka K, Yamashita S, Yamabe H, Yamabe T (1987) Electronic properties of one-dimensional graphite family. Synth Met 17:143–148

    Article  CAS  Google Scholar 

  19. Fujita M, Wakabayashi K, Nakada K, Kusakabe K (1996) Peculiar localized state at zigzag graphite edge. J Phys Soc Jpn 65:1920–1923

    Article  CAS  Google Scholar 

  20. Nakada K, Fujita M, Dresslhaus G, Dresslhaus M (1996) Edge state in graphene ribbons: nanometer size effect and edge shape dependence. Phys Rev B 54:17954–17961

    Article  CAS  Google Scholar 

  21. Okada S, Oshiyama A (2001) Magnetic ordering in hexagonally bonded sheets with first-row elements. Phys Rev Lett 87:146803

    Article  CAS  Google Scholar 

  22. Yamashiro A, Shimoi Y, Harigaya K, Wakabayashi K (2003) Spin- and charge-polarized states in nanographene ribbons with zigzag edges. Phys Rev B 68:193410

    Article  Google Scholar 

  23. Wu J, Pisula W, Müllen K (2007) Graphenes as potential material for electronics. Chem Rev 107:718–747

    Article  CAS  Google Scholar 

  24. Fujii S, Enoki T (2013) Nanographene and graphene edges: electronic structure and nanofabrication. Acc Chem Res 46:2202–2210

    Article  CAS  Google Scholar 

  25. Wallace PR (1947) The band theory of graphite. Phys Rev 71:622–634

    Article  CAS  Google Scholar 

  26. Mathieu C, Barrett N, Rault J, Mi YY, Zhang B, de Heer WA, Berger C, Conrad EH, Renault O (2011) Microscopic correlation between chemical and electronic states in epitaxial graphene on SiC(0001). Phys Rev B 83:235436

    Article  Google Scholar 

  27. Clar E (1964) Polycyclic hydrocarbons, vol I and II. Academic, London

    Book  Google Scholar 

  28. Clar E (1972) The aromatic sextet. Wiley, London

    Google Scholar 

  29. Novoselov KS, Fal’ko VI, Colombo L, Gellert PR, Schwab MG, Kim K (2012) A roadmap for graphene. Nature 490:192–200

    Article  CAS  Google Scholar 

  30. Allen MJ, Tung VC, Kaner RB (2010) Honeycomb carbon: a review of graphene. Chem Rev 110:132–145

    Article  CAS  Google Scholar 

  31. Cheng L, Hernandez Y, Feng X, Müllen K (2012) From nanographene and graphene nanoribbons to graphene sheets: chemical synthesis. Angew Chem Int Ed 51:7640–7654

    Article  Google Scholar 

  32. Datt SS, Strachan DR, Khamis SM, Johnson ATC (2008) Crystallographic etching of few-layer graphene. Nano Lett 8:1912–1915

    Article  Google Scholar 

  33. Campos-Delgado J, Romo-Herrera JM, Jia X, Cullen DA, Muramatsu H, Kim YA, Hayashi T, Ren Z, Smith DJ, Okuno Y, Ohba T, Kanoh H, Kaneko K, Endo M, Terrones H, Dresselhaus MS, Terrones M (2008) Bulk production of a new form of sp2 carbon: crystalline graphene nanoribbons. Nano Lett 8:2773–2778

    Article  CAS  Google Scholar 

  34. Yang XY, Dou X, Rouhanipour A, Zhi L, Räder HJ, Müllen K (2008) Two-dimensional graphene nanoribbons. J Am Chem Soc 130:4216–4217

    Article  CAS  Google Scholar 

  35. Cai J, Ruffieux P, Jaafar R, Bieri M, Braun T, Blankenburg S, Muoth M, Seitsonen AP, Saleh M, Feng X, Müllen K, Fasel R (2010) Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466:470–473

    Article  CAS  Google Scholar 

  36. Narita A, Feng X, Hernandez Y, Jensen SA, Bonn M, Yang H, Verzhbitskiy IA, Casiraghi C, Hansen MR, Koch AHR, Fytas G, Ivasenko O, Li B, Mali KS, Balandina T, Mahesh S, Feyter SD, Müllen K (2014) Synthesis of structurally well-defined and liquid-phase-processable graphene nanoribbons. Nat Chem 6:126–132

    Article  CAS  Google Scholar 

  37. Chen ZH, Lin YM, Rooks MJ, Avouris P (2007) Graphene nano-ribbon electronics. Phys E 40:228–232

    Article  CAS  Google Scholar 

  38. Han MY, Ozyilmaz B, Zhang YB, Kim P (2007) Energy band-gap engineering of graphene nanoribbons. Phys Rev Lett 98:206805

    Article  Google Scholar 

  39. Jiao LY, Zhang L, Wang XR, Diankov G, Dai HJ (2009) Narrow graphene nanoribbons from carbon nanotubes. Nature 458:877–880

    Article  CAS  Google Scholar 

  40. Kosynkin DV, Higginbotham AL, Sinitskii A, Lomeda JR, Dimiev A, Price BK, Tour JM (2009) Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458:872–876

    Article  CAS  Google Scholar 

  41. Elías AL, Méndez ARB, Rodríguez DM, González VJ, González DR, Ci L, Sandoval EM, Ajayan PM, Terrones H, Terrones M (2009) Longitudinal cutting of pure and doped carbon nanotubes to form graphitic nanoribbons using metal clusters as nanoscalpels. Nano Lett 10:366–372

    Article  Google Scholar 

  42. Jiao L, Wang X, Diankov G, Wang H, Dai H (2010) Facile synthesis of high-quality graphene nanoribbons. Nat Nanotechnol 5:321–325

    Article  CAS  Google Scholar 

  43. Kobayashi Y, Fukui K, Enoki T, Kusakabe K, Kaburagi Y (2005) Observation of zigzag and armchair edges of graphite using scanning tunneling microscopy and spectroscopy. Phys Rev B 71:193406

    Article  Google Scholar 

  44. Niimi Y, Matsui T, Kambara H, Tagami K, Tsukada M, Fukuyama H (2005) Scanning tunneling microscopy and spectroscopy studies of graphite edges. Appl Surf Sci 241:43–48

    Article  CAS  Google Scholar 

  45. Kobayashi Y, Fukui K, Enoki T, Kusakabe K (2006) Edge state on hydrogen-terminated graphite edges investigated by scanning tunneling microscopy. Phys Rev B 73:125415

    Article  Google Scholar 

  46. Enoki T, Kobayashi Y, Fukui K (2007) Electronic structures of graphene edges and nanographene. Int Rev Phys Chem 26:609–645

    Article  CAS  Google Scholar 

  47. Ritter KA, Lyding JW (2009) The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons. Nat Mater 8:235–242

    Article  CAS  Google Scholar 

  48. Sugawara K, Sato T, Souma S, Takahashi T, Suematsu H (2006) Fermi surface and edge-localized states in graphite studied by high-resolution angle-resolved photoemission spectroscopy. Phys Rev B 73:045124

    Article  Google Scholar 

  49. Suenaga K, Koshino M (2010) Atom-by-atom spectroscopy at graphene edge. Nature 468:1088–1090

    Article  CAS  Google Scholar 

  50. Joly VLJ, Kiguchi M, Hao SJ, Takai K, Enoki T, Sumii R, Amemiya K, Muramatsu H, Hayashi T, Kim YA, Endo M, Campos-Delgado J, López-Urías F, Botello-Méndez A, Terrones H, Terrones M, Dresselhaus MS (2010) Observation of magnetic edge state in graphene nanoribbons. Phys Rev B 81:245428

    Article  Google Scholar 

  51. Hou Z, Wang X, Ikeda T, Huang SF, Terakura K, Boero M, Oshima M, Kakimoto M, Miyata S (2011) Effect of hydrogen termination on carbon K-edge X-ray absorption spectra of nanographene. J Phys Chem C 115:5392–5403

    Article  CAS  Google Scholar 

  52. Tao C, Jiao L, Yazyev OV, Chen YC, Feng J, Zhang X, Capaz RB, Tour JM, Zettl A, Louie SG, Dai H, Crommie MF (2011) Spatially resolving edge states of chiral graphene nanoribbons. Nat Phys 7:616–620

    Article  CAS  Google Scholar 

  53. Pan M, Girão EC, Jia X, Bhaviripudi S, Li Q, Kong J, Meunier V, Dresselhaus MS (2012) Topographic and spectroscopic characterization of electronic edge states in CVD grown graphene nanoribbons. Nano Lett 12:1928–1933

    Article  CAS  Google Scholar 

  54. Sarkar S, Bekyarova E, Haddon RC (2012) Chemistry at the Dirac point: Diels–Alder reactivity of graphene. Acc Chem Res 45:673–682

    Article  CAS  Google Scholar 

  55. Bekyarova E, Sarkar S, Wang F, Itkis ME, Kalinina I, Tian X, Haddon RC (2013) Effect of covalent chemistry on the electronic structure and properties of carbon nanotubes and graphene. Acc Chem Res 46:65–76

    Article  CAS  Google Scholar 

  56. Bon SB, Valentini L, Verdejo R, Fierro JLG, Peponi L, Lopez-Manchado MA, Kenny JM (2009) Plasma fluorination of chemically derived graphene sheets and subsequent modification with butylamine. Chem Mater 21:3433–3438

    Article  Google Scholar 

  57. Ryu S, Han MY, Maultzsch J, Heinz TF, Kim P, Steigerwald M, Brus LE (2008) Reversible basal plane hydrogenation of graphene. Nano Lett 8:4597–4602

    Article  CAS  Google Scholar 

  58. Ruffieux P, Groning O, Schwaller P, Schlapbach L, Groning P (2000) Hydrogen atoms cause long-range electronic effects on graphite. Phys Rev Lett 84:4910–4913

    Article  CAS  Google Scholar 

  59. Bahr JL, Yang J, Kosynkin DV, Bronikowski MJ, Smalley RE, Tour JM (2001) Functionalization of carbon nanotubes by electrochemical reduction of aryl diazonium salts: a bucky paper electrode. J Am Chem Soc 123:6536–6542

    Article  CAS  Google Scholar 

  60. Koehler FM, Jacobsen A, Ensslin K, Stampfer C, Stark WJ (2010) Selective chemical modification of graphene surfaces: distinction between single- and bilayer graphene. Small 6:1125–1130

    Article  CAS  Google Scholar 

  61. Sharma R, Baik JH, Perera CJ, Strano MS (2010) Anomalously large reactivity of single graphene layers and edges toward electron transfer chemistries. Nano Lett 10:398–405

    Article  CAS  Google Scholar 

  62. Bekyarova E, Itkis ME, Ramesh P, Berger C, Sprinkle M, de Heer WA, Haddon RC (2009) Chemical modification of epitaxial graphene: spontaneous grafting of aryl groups. J Am Chem Soc 131:1336–1337

    Article  CAS  Google Scholar 

  63. Boukhvalov DW, Katsnelson MI (2009) Chemical functionalization of graphene. J Phys Condens Matter 21:344205

    Article  CAS  Google Scholar 

  64. Boukhvalov DW (2011) Modeling of epitaxial graphene functionalization. Nanotechnology 22:055708

    Article  CAS  Google Scholar 

  65. Sarkar S, Bekyarova E, Niyogi S, Haddon RC (2011) Diels–Alder chemistry of graphite and graphene: graphene as diene and dienophile. J Am Chem Soc 133:3324–3327

    Article  CAS  Google Scholar 

  66. Talirz L, Sode H, Cai J, Ruffieux P, Blankenburg S, Jafaar R, Berger R, Feng X, Mullen K, Passerone D, Fasel R, Pignedoli CA (2013) Termini of bottom-up fabricated graphene nanoribbons. J Am Chem Soc 135:2060–2063

    Google Scholar 

  67. Stein SE, Brown RL (1987) π-Electron properties of large condensed polyaromatic hydrocarbons. J Am Chem Soc 109:3721–3729

    Google Scholar 

  68. Bendikov M, Duong HM, Starkey K, Houk KN, Carter EA, Wudl F (2004) Oligoacenes: theoretical prediction of open-shell singlet diradical ground state. J Am Chem Soc 126:7416–7417 and 10493.

    Google Scholar 

  69. Jiang D, Dai S (2008) Electronic ground state of higher acenes. J Phys Chem A 112:332–335

    Article  CAS  Google Scholar 

  70. Hachmann J, Dorando JJ, Avilés M, Chan GKL (2007) The radical character of the acenes: a density matrix renormalization. J Chem Phys 127:134309

    Article  Google Scholar 

  71. Tönshoff C, Bettinger HF (2010) Photogeneration of octacene and nonacene. Angew Chem Int Ed 49:4125–4128

    Article  Google Scholar 

  72. Purushothaman B, Bruzek M, Parkin SR, Miller AF, Anthony JE (2011) Synthesis and structural characterization of crystalline nonacene. Angew Chem Int Ed 50:7013–7017

    Article  CAS  Google Scholar 

  73. De J, Sumpter BG, Dai S (2007) First principles study of magnetism in nanographenes. J Chem Phys 127:124703

    Article  Google Scholar 

  74. Hod O, Barone V, Scuseria GE (2008) Half-metallic graphene nanodots: a comprehensive first-principles theoretical study. Phys Rev B 77:035411

    Article  Google Scholar 

  75. Moscardo F, San-Fabián E (2009) On the existence of a spin-polarized state in the n-periacene molecules. Chem Phys Lett 480:26–30

    Article  CAS  Google Scholar 

  76. De J, Dai S (2008) Circumacenes versus periacenes: HOMO–LUMO gap and transition from nonmagnetic to magnetic ground state with size. Chem Phys Lett 466:72–75

    Article  Google Scholar 

  77. Plasser F, Pašalić H, Gerzabek MH, Libisch F, Reiter R, Burgdçrfer J, Müller T, Shepard R, Lischka H (2013) The multiradical character of one- and two-dimensional graphene nanoribbons. Angew Chem Int Ed 52:2581–2584

    Article  CAS  Google Scholar 

  78. Goto K, Kubo T, Yamamoto K, Nakasuji K, Sato K, Shiomi D, Takui T, Kubota M, Kobayashi T, Yakushi K, Ouyang J (1999) A stable neutral hydrocarbon radical: synthesis, crystal structure, and physical properties of 2,5,8-tri-tert-butyl-phenalenyl. J Am Chem Soc 121:1619–1620

    Article  CAS  Google Scholar 

  79. Ovchinnikov A (1978) Multiplicity of the ground state of large alternant organic molecules with conjugated bonds. Theor Chim Acta 47:297–304

    Article  CAS  Google Scholar 

  80. Borden WT, Davidson ER (1977) Effects of electron repulsion in conjugated hydrocarbon diradicals. J Am Chem Soc 99:4587–4594

    Article  CAS  Google Scholar 

  81. Morita Y, Suzuki S, Sato K, Takui T (2011) Synthetic organic spin chemistry for structurally well-defined open-shell graphene fragments. Nat Chem 3:197–204

    Article  CAS  Google Scholar 

  82. Inoue J, Fukui K, Kubo T, Nakazawa S, Sato K, Shiomi D, Morita Y, Yamamoto K, Takui T, Nakasuji K (2001) The first detection of a Clar’s hydrocarbon, 2,6,10-tri-tert-butyltriangulene: a ground-state triplet of non-Kekulé polynuclear benzenoid hydrocarbon. J Am Chem Soc 123:12702–12703

    Article  CAS  Google Scholar 

  83. Li Y, Huang KW, Sun Z, Webster RD, Zeng Z, Zeng W, Chi C, Furukawa K, Wu J (2014) A kinetically blocked 1,14:11,12-dibenzopentacene:a persistent triplet diradical of a non-Kekulé polycyclic benzenoid hydrocarbon. Chem Sci 5:1908–1914

    Article  CAS  Google Scholar 

  84. For a recent summary of anthenes, see Konishi A, Hirao Y, Kurata H, Kubo T, M Nakano, Kamada K (2014) Anthenes: model systems for understanding the edge state of graphene nanoribbons. Pure Appl Chem 86:497–595. See also ref [85].

    Google Scholar 

  85. Konishi A, Hirao Y, Kurata H, Kubo T (2013) Investigating the edge state of graphene nanoribbons by a chemical approach: synthesis and magnetic properties of zigzag-edged nanographene molecules. Solid State Commun 175–176:62–70

    Article  Google Scholar 

  86. For a recent review of open-shell polycyclic aromatic hydrocarbons, see: Sun Z, Wu J (2012) Open-shell polycyclic aromatic hydrocarbons. J Mater Chem 22:4151–4160

    Google Scholar 

  87. Yamaguchi K (1990) Chapter 7 Instability in Chemical Bonds. In: Carbo R, Klobukowski M (eds) Self-consistent field: theory and applications. Elsevier, Amsterdam, pp 727–823

    Google Scholar 

  88. Scholl R, Meyer K (1934) Der blaue aromatische Grundkohlenwasserstoff des meso-Naphtho-dianthrons und seine Überführung durch Maleinsäure-anhydrid in Anthro-dianthren. Ber Dtsch Chem Ges 67:1236–1238

    Article  Google Scholar 

  89. Clar E (1948) Das Kondensationsprinzip, ein einfaches neues Prinzip im Aufbau der aromatischen Kohlenwasserstoffe (Aromatische Kohlenwassertoffe XLII. Mitteilung). Chem Ber 81:52–63

    Article  CAS  Google Scholar 

  90. Hirao Y, Konishi A, Matsumoto K, Kurata H, Kubo T (2012) Synthesis and electronic structure of bisanthene: a small molecular-sized graphene with zigzag edges. AIP Conf Proc 1504:863–866

    Article  CAS  Google Scholar 

  91. Li J, Zhang K, Zhang X, Huang KW, Chi C, Wu J (2010) meso-Substituted bisanthenes as soluble and stable near-infrared dyes. J Org Chem 75:856–863

    Article  CAS  Google Scholar 

  92. Fort EH, Donovan PM, Scott LT (2009) Diels–Alder reactivity of polycyclic aromatic hydrocarbon bay regions: implications for metal-free growth of single-chirality carbon nanotubes. J Am Chem Soc 131:16006–16007

    Article  CAS  Google Scholar 

  93. Arabei SM, Pavich TA (2000) Spectral-luminescent properties and photoinduced transformations of bisanthene and bisanthenequinone. J Appl Spectrosc 67:236–244

    Article  CAS  Google Scholar 

  94. Konishi A, Hirao Y, Nakano M, Shimizu A, Botek E, Champagne B, Shiomi D, Sato K, Takui T, Matsumoto K, Kurata H, Kubo T (2010) Synthesis and characterization of teranthene: a singlet biradical polycyclic aromatic hydrocarbon having Kekulé structures. J Am Chem Soc 132:11021–11023

    Article  CAS  Google Scholar 

  95. Konishi A, Hirao Y, Matsumoto K, Kurata H, Kishi R, Shigeta Y, Nakano M, Tokunaga K, Kamada K, Kubo T (2013) Synthesis and characterization of quarteranthene: elucidating the characteristics of the edge state of graphene nanoribbons at the molecular level. J Am Chem Soc 135:1430–1437

    Article  CAS  Google Scholar 

  96. Konishi A, Hirao Y, Matsumoto K, Kurata H, Kubo T (2013) Facile synthesis and lateral π-expansion of bisanthenes. Chem Lett 42:592–594

    Article  CAS  Google Scholar 

  97. Zhai L, Shukla R, Wadumethrige SH, Rathore R (2010) Probing the arenium-ion (proton transfer) versus the cation-radical (electron transfer) mechanism of scholl reaction using DDQ as oxidant. J Org Chem 75:4748–4760

    Article  CAS  Google Scholar 

  98. Kruszewski J, Krygowski TM (1972) Definition of aromaticity basing on the harmonic oscillator model. Tetrahedron Lett 13:3839–3842

    Article  Google Scholar 

  99. Krygowski TM (1993) Crystallographic studies of inter- and intramolecular interactions reflected in aromatic character of π-electron systems. J Chem Inf Comput Sci 33:70–78

    Article  CAS  Google Scholar 

  100. Glukhovtesev MN, Bach RD, Laiter S (1997) Isodesmic and homodesmotic stabilization energies of [n]annulenes and their relevance to aromaticity and antiaromaticity: is absolute antiaromaticity possible? J Mol Struct 417:123–129

    Article  Google Scholar 

  101. Slayden SW, Liebman JF (2001) The energetics of aromatic hydrocarbons: an experimental thermochemical perspective. Chem Rev 101:1541–1566

    Article  CAS  Google Scholar 

  102. Douglas JE, Rabinovitch BS, Looney FS (1955) Kinetics of the thermal cis-trans isomerization of dideuteroethylene. J Chem Phys 23:315–323

    Article  CAS  Google Scholar 

  103. Motta SD, Negri F, Fazzi D, Castiglioni C, Canesi EV (2010) Biradicaloid and polyenic character of quinoidal oligothiophenes revealed by the presence of a low-lying double-exciton state. J Phys Chem Lett 1:3334–3339

    Article  Google Scholar 

  104. Koch KH, Müllen K (1991) Synthesis of tetraalkyl-substituted oligo(l,4-naphthylene)s and cyclization to soluble oligoberi-naphthy1ene)s. Chem Ber 124:2091–2100

    Article  CAS  Google Scholar 

  105. Angeli C, Pastore M, Cimiraglia C (2007) New perspectives in multireference perturbation theory: the n-electron valence state approach. Theor Chem Acc 117:743–754

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Kubo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Konishi, A., Kubo, T. (2015). Organic Chemistry of Graphene Framework. In: Akasaka, T., Osuka, A., Fukuzumi, S., Kandori, H., Aso, Y. (eds) Chemical Science of π-Electron Systems. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55357-1_20

Download citation

Publish with us

Policies and ethics