Skip to main content

Recent Progress in Stable High-Spin Molecules Based on Nitroxide Radicals

  • Chapter
Book cover Chemical Science of π-Electron Systems

Abstract

Organic-based open-shell π-electronic molecules are promising components for unique electronic devices because of the diversity in their design. Of these compounds, high-spin π-electronic molecules are attractive building blocks of molecule-based magnets and spintronic devices. However, there are only a few reports of high-spin π-electronic molecules with large intramolecular exchange interactions (J intra/k B > + 300 K) and with isolable stability, although general guides of molecular designs to obtain high-spin π-electronic molecules have already been established. In this chapter, recent studies from our research group on high-spin π-electronic molecules are reported. First, stable trimethylenemethane analogues composed of nitroxide and nitronyl nitroxide or imino nitroxide moieties and their metal complexes are outlined. This is followed by the description of (nitronyl nitroxide)-substituted electron donor radical cations as new components for molecule-based magnets. Finally, a trinitroxide-substituted trioxytriphenylamine is discussed, which constitutes a novel spin-state conversion system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hicks RG (ed) (2010) Stable radicals: fundamentals and applied aspects of odd-electron compounds. Wiley, Chichester

    Google Scholar 

  2. Hicks RG (2007) What’s new in stable radical chemistry? Org Biomol Chem 5:1321–1338

    Article  CAS  Google Scholar 

  3. Morita Y, Suzuki S et al (2011) Synthetic organic spin chemistry for structurally well-defined open-shell graphene fragments. Nat Chem 3:197–204

    Article  CAS  Google Scholar 

  4. Lahti PM (ed) (1999) Magnetic properties of organic materials. Marcel Dekker, New York

    Google Scholar 

  5. Itoh K, Kinoshita M (eds) (2000) Molecular magnetism. Kodansha & Gordon and Breach, Tokyo

    Google Scholar 

  6. Miller JS, Drillon M (eds) (2001–2005) Magnetism: molecules to materials II–IV. Wiley-VCH, Weinheim

    Google Scholar 

  7. Veciana J (ed) (2001) π-electron magnetism from molecules to magnetic materials. Springer, Berlin

    Google Scholar 

  8. Pal SK, Itkis ME et al (2005) Resonating valence-bond ground state in a phenalenyl-based neutral radical conductor. Science 309:281–284

    Article  CAS  Google Scholar 

  9. Iwasaki S, Hu R et al (2009) Interactive radical dimers in photoconductive organic thin films. Angew Chem Int Ed 48:4022–4024

    Article  CAS  Google Scholar 

  10. Nishide H, Oyaizu K (2008) Toward flexible batteries. Science 319:737–738

    Article  CAS  Google Scholar 

  11. Morita Y, Nishida S (2011) Organic tailored batteries materials using stable open-shell molecules with degenerate frontier orbitals. Nat Mater 10:947–951

    Article  CAS  Google Scholar 

  12. Sugawara T, Komatsu H et al (2011) Interplay between magnetism and conductivity derived from spin-polarized donor radicals. Chem Soc Rev 40:3105–3118

    Article  CAS  Google Scholar 

  13. Matsushita MM, Kawakami H et al (2008) Molecule-based system with coexisting conductivity and magnetism and without magnetic inorganic ions. Phys Rev B 77:195208

    Article  Google Scholar 

  14. Coronad E, Epstein AJ (2009) Molecular spintronics and quantum computing. J Mater Chem 19:1670–1671

    Article  Google Scholar 

  15. Nakazawa S, Nishida S (2012) A synthetic two-spin quantum bit: g-Engineered exchange-coupled biradical designed for controlled-NOT gate operations. Angew Chem Int Ed 51:9860–9864

    Article  CAS  Google Scholar 

  16. Matsuki Y, Maly T et al (2009) Dynamic nuclear polarization with a rigid biradical. Angew Chem Int Ed 48:4996–5000

    Article  CAS  Google Scholar 

  17. Boden WT (1982) Diradicals. Wiley, New York, pp 1–72

    Google Scholar 

  18. Itoh K (1967) Electron spin resonance of an aromatic hydrocarbon in its quintet ground state. Chem Phys Lett 1:235–238

    Article  CAS  Google Scholar 

  19. Wasserman E, Murray RW et al (1967) Quintet ground states of m-dicarbene and m-dinitrene compounds. J Am Chem Soc 89:5076–5078

    Article  CAS  Google Scholar 

  20. Lahti PM (1996) Design of organic-based materials with controlled magnetic properties. In: Turnbull MM, Sugimoto T, Thompson LK (eds) Molecule-based magnetic materials. American Chemical Society, Washigton, DC, pp 218–235

    Chapter  Google Scholar 

  21. Rajca A, Wongsriratanakul J et al (2001) Magnetic ordering in an organic polymer. Science 294:1503–1505

    Article  CAS  Google Scholar 

  22. Yang NC, Castro AJ (1960) Synthesis of a stable biradical. J Am Chem Soc 82:6208

    Article  CAS  Google Scholar 

  23. Inoue K, Iwamura H (1995) 2-[p(N-tert-Butyl-N-oxyamino)phenyl]-4,4,5,5-tetramethyl-4,5-dihydroimidazol-3-oxide-1-oxyl, a stable diradical with a triplet ground state. Angew Chem Int Ed Engl 34:927–928

    Article  CAS  Google Scholar 

  24. Hiraoka S, Okamoto T (2004) A stable radical-substituted radical cation with strongly ferromagnetic interaction: nitronyl nitroxide-substituted 5,10-diphenyl-5,10-dihydrophenazine radical cation. J Am Chem Soc 126:58–59

    Article  CAS  Google Scholar 

  25. Suzuki S, Furui T (2010) Nitroxide-substituted nitronyl nitroxide and iminonitroxide. J Am Chem Soc 132:15908–15910

    Article  CAS  Google Scholar 

  26. Dowd P, Chow M (1977) Generation and capture of common intermediates from proto-planar and proto-bisected trimethylenemethane precursors. Thermal rearrangement of a methylenepyrazoline. J Am Chem Soc 99:8507

    Article  Google Scholar 

  27. Itoh T, Matuda K et al (2000) Tris[p-(N-oxyl-N-tert-butylamino)phenyl]amine, −methyl, and -borane have doublet, triplet, and doublet ground states, respectively. J Am Chem Soc 122:2567–2576

    Article  CAS  Google Scholar 

  28. Furui T, Suzuki S et al (2014) Preparation and magnetic properties of metal-complexes from N-t-butyl-N-oxidanyl-2-amino-(nitronyl nitroxide). Inorg Chem 53:802–809

    Article  CAS  Google Scholar 

  29. Masuda Y, Kuratsu M et al (2009) A new ferrimagnet based on a radical-substituted radical cation salt. J Am Chem Soc 131:4670–4673

    Article  CAS  Google Scholar 

  30. Sugano T, Furusawa T et al (1991) Magnetic interactions among unpaired electrons in charge-transfer complexes of organic donors having a neutral radical. Synth Met 43:3281–3284

    Article  CAS  Google Scholar 

  31. Sakurai H, Izuoka A (2000) Design, preparation, and electronic structure of high-spin cation diradicals derived from amine-based spin-polarized donors. J Am Chem Soc 122:9723–9734

    Article  CAS  Google Scholar 

  32. Nakamura Y, Koga N et al (1991) Synthesis and characterization of 2-ferrocenyl-4,4,5,5-tetramethyl-2-imidazolin-l-oxyl 3-oxide and its CT-complex with DDQ. Chem Lett 20:69–72

    Article  Google Scholar 

  33. Nakazaki J, Ishikawa Y et al (2000) Preparation of isolable ion-radical salt derived from TTF-based spin-polarized donor. Chem Phys Lett 319:385–390

    Article  CAS  Google Scholar 

  34. Kumai R, Mastushita MM et al (1994) Intramolecular exchange interaction in a novel cross-conjugated spin system composed of π-ion radical and nitronyl nitroxide. J Am Chem Soc 116:4523–4524

    Article  CAS  Google Scholar 

  35. Mastushita MM, Kawakami H et al (2007) Negative magneto-resistance observed on an ion-radical salt of a TTF-based spin-polarized donor. Chem Lett 36:110–111

    Article  Google Scholar 

  36. Komatsu H, Matsushita MM et al (2010) Influence of magnetic field upon the conductance of a unicomponent crystal of a tetrathiafulvalene-based nitronyl nitroxide. J Am Chem Soc 132:4528–4529

    Article  CAS  Google Scholar 

  37. Sugimoto T, Yamaga M et al (1993) Intramolecular spin-spin exchange in cation radicals of tetrathiafulvalene derivatives substituted with imino pyrolidine- and piperidine-1-oxyls. Chem Lett 22:1361–1364

    Article  Google Scholar 

  38. Sugimoto T, Yamaga M et al (1993) Different magnetic properties of charge-transfer complexes and cation radical salts of tetrathiafulvalene derivatives substituted with imino pyrolidine- and piperidine-1-oxyls. Chem Lett 22:1817–1820

    Article  Google Scholar 

  39. Masuda Y, Kuratsu M et al (2009) Preparation and magnetic properties of verdazyl-substituted dihydrophenazine radical cation tetrachloroferrate salts. Polyhedron 28:1950–1954

    Article  CAS  Google Scholar 

  40. Masuda Y, Takeda H et al (2010) Radical-substituted dihydrophenazine radical cation salts: molecular packing structure and bulk magnetic property. Pure Appl Chem 82:1025–1032

    Article  CAS  Google Scholar 

  41. Kuratsu M, Suzuki S et al (2012) (Nitronyl nitroxide)-substituted trioxytriphenylamine radical cation tetrachlorogallate salt: a 2p-electron-based weak ferromagnet composed of a triplet diradical cation. Chem Asian J 7:1604–1609

    Article  CAS  Google Scholar 

  42. Yamaguchi K, Namimoto H et al (1990) Possibilities of organic ferromagnets and ferrimagnets by the use of charge-transfer (CT) complexes with radical substituents. Ab initio MO studies. Chem Phys Lett 166:408–414

    Article  CAS  Google Scholar 

  43. Kuratsu M, Kozaki M et al (2005) 2,2′:6′,2″,:6″,6-Trioxytriphenylamine: synthesis and properties of the radical cation and neutral species. Angew Chem Int Ed 44:4056–4058

    Article  CAS  Google Scholar 

  44. Kurastu M, Suzuki S et al (2007) Magnetic interaction of tri- and di-oxytriphenylamine radical cation FeCl4 salts. Inorg Chem 46:10153–10157

    Article  Google Scholar 

  45. Banister AJ, Bricklebank BK et al (1996) Spontaneous magnetization in a sulfur–nitrogen radical at 36 K. Angew Chem Int Ed 35:2533–2535

    Article  CAS  Google Scholar 

  46. Tomiyoshi S, Yano T et al (1994) Weak ferromagnetism and antiferromagnetic ordering of 2p electrons in the organic radical compound 2,4,6-triphenylverdazyl. Phys Rev B 49:16031–16034

    Article  CAS  Google Scholar 

  47. Kremer RK, Kanellakopulos B et al (1991) Weak ferromagnetism and magnetically modulated microwave absorption at low magnetic fields in 1,3,5-triphenyl-6-oxoverdazyl. Chem Phys Lett 230:255–259

    Article  Google Scholar 

  48. Jamali JB, Achiwa N et al (1998) Single-crystal weak ferromagnetism of 1,3,5-triphenyl-6-oxoverdazyl free radical and ferromagnetic behavior of (TOV)1–x (TOV-H)x diluted system. J Magn Magn Mater 177–181:789–791

    Article  Google Scholar 

  49. Ito A, Nakano Y et al (2005) Tetraarylethylene having two nitroxide groups: redox-switching of through-bond magnetic interaction by conformation change. Chem Commun 403–405

    Google Scholar 

  50. Mastuda K, Iwamura H (1997) Singlet and triplet states are degenerate in 2,3-dimethylenecyclohexane-1,4-diyl. J Am Chem Soc 119:7412–7413

    Article  Google Scholar 

  51. Itoh T, Matsuda K et al (1999) A triphenylamine derivative with three p-(N-tert-butyl-N-oxylamino)phenyl radical units and yet a doublet ground state. Angew Chem Int Ed 38:1791–1793

    Article  CAS  Google Scholar 

  52. Itoh T, Matsuda K et al (2001) The ground spin states of tris[p-(N-oxyl-N-tert-butylamino)phenyl] amine, −methyl, and -borane. Prospects of further studies. J Solid State Chem 159:428–439

    Article  CAS  Google Scholar 

  53. Suzuki S, Nagata A et al (2012) Trinitroxide-trioxytriphenylamine: spin-state conversion from triradical doublet to diradical cation triplet by oxidative modulation of a π-conjugated system. Angew Chem Int Ed 51:3193–3197

    Article  CAS  Google Scholar 

  54. Zhang X, Suzuki S et al (2012) NCN pincer–Pt complexes coordinated by (nitronyl nitroxide)-2-ide radical anion. J Am Chem Soc 134:17866–17868

    Article  CAS  Google Scholar 

  55. Tanimoto R, Suzuki S et al (2014) Nitronyl nitroxide as a coupling partner: Pd-Mediated cross-coupling of (nitronyl nitroxide-2-ido)(triphenylphosphine)gold(I) with aryl halides. Chem Lett 43:678–680

    Article  CAS  Google Scholar 

Download references

Acknowledgments

These works were partially supported by a Grant-in-Aid for Scientific Research on Innovative Areas “Emergence of Highly Elaborated π-Space,” “Stimuli-Responsive Chemical Species for the Creation of Functional Molecules,” and “π-System Figuration: Control of Electron and Structural Dynamism for Innovative Functions” from MEXT.

The author gratefully acknowledges the invaluable discussions, many helpful suggestions, and encouragement of Professor Keiji Okada and Associate Professor Masatoshi Kozaki. The author would like to thank Professor Takeji Takui, Professor Kazunobu Sato, Associate Professor Daisuke Shiomi, Dr. Kazuo Toyota, and Dr. Kenji Sugisaki (Osaka City University) for their ESR and SQUID measurements, theoretical calculations, and helpful discussions. The author would also like to thank Professor Yuko Hosokoshi (Osaka Prefecture University) for SQUID measurements and Associate Professor Yuji Miyazaki and Professor Akira Inaba (Osaka University) for their heat capacity measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuichi Suzuki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Suzuki, S. (2015). Recent Progress in Stable High-Spin Molecules Based on Nitroxide Radicals. In: Akasaka, T., Osuka, A., Fukuzumi, S., Kandori, H., Aso, Y. (eds) Chemical Science of π-Electron Systems. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55357-1_19

Download citation

Publish with us

Policies and ethics