Skip to main content

Localized Singlet 1,3-Diradicals

  • Chapter
  • 1878 Accesses

Abstract

Localized singlet diradicals are key intermediates in chemical reactions involving homolytic bond-cleavage and bond formation processes. In the past, the short-lived character of the reactive intermediate impeded the experimental investigations on the molecular and electronic structures of these intermediates. However, over the past 20 years, the chemistry of singlet diradicals has seen significant development following the pioneering studies of the generation of long-lived singlet diradicals. This chapter summarizes recent developments in the chemistry of localized singlet diradicals, which include (a) the effect of the substituent and the heteroatom on the ground-state spin multiplicity and the most stable electronic configuration of the singlet state (type 1 versus type 2), (b) the reactivity of localized singlet 1,3-diradicals, and (c) the generation and characterization of long-lived singlet diradicals with π-single-bonded character.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Amyes TL, Toteva MM, Richard JP (2004) In: Moss RA, Platz MS, Jones M (eds) Reactive intermediate chemistry. Wiley, Hoboken, pp 41–68

    Google Scholar 

  2. McClelland RA (2004) In: Moss RA, Platz MS, Jones M (eds) Reactive intermediate chemistry. Wiley, Hoboken, pp 3–40

    Google Scholar 

  3. Gronert S (2004) In: Moss RA, Platz MS, Jones M Jr (eds) Reactive intermediate chemistry. Wiley, Hoboken, pp 69–120

    Google Scholar 

  4. Borden WT (ed) (1982) Diradicals. Wiley, New York

    Google Scholar 

  5. Platz MS (ed) (1990) Kinetics and spectroscopy of carbenes and biradials. Plenum Press, New York

    Google Scholar 

  6. Salem L, Rowlaand C (1972) Electronic properties of diradicals. Angew Chem Int Ed 11:92–111

    Article  CAS  Google Scholar 

  7. Namai H, Ikeda H, Hoshi Y, Mizuno K (2007) Thermoluminescence originating from the singlet excited state of 1,4-diarylcyclohexane-1,4-diyls: a potentially general strategy for the observation of short-lived biradicals. Angew Chem Int Ed 46:7396–7398

    Article  CAS  Google Scholar 

  8. Scaiano JC (1982) Does intersystem crossing in triplet biradicals generate singlets with conformational memory. Tetrahedron 38:819–824

    Article  CAS  Google Scholar 

  9. Doubleday C Jr, Turro NJ, Wang J-F (1989) Dynamics of flexible triplet biradicals. Acc Chem Res 22:199–205

    Article  CAS  Google Scholar 

  10. Adam W, Grabowski S, Wilson RM (1990) Localized cyclic triplet diradicals – lifetime determination by trapping with oxygen. Acc Chem Res 23:165–172

    Article  CAS  Google Scholar 

  11. Griesbeck AG, Mauder H, Stadtmueller S (1994) Intersystem crossing in triplet 1,4-biradicals – conformational memory effects on the stereoselectivity of photocycloaddition reactions. Acc Chem Res 27:70–75

    Article  CAS  Google Scholar 

  12. Griesbeck AG, Abe M, Bondock S (2004) Selectivity control in electron spin inversion processes: regio- and stereochemistry of Paterno-Buchi photocycloadditions as a powerful tool for mapping intersystem crossing processes. Acc Chem Res 37:919–928

    Article  CAS  Google Scholar 

  13. Johnston LJ, Scaiano JC (1989) Time-resolved studies of biradical reactions in solution. Chem Rev 89:521–547

    Article  CAS  Google Scholar 

  14. Johnston LJ (1993) Photochemistry of radicals and biradicals. Chem Rev 93:251–266

    Article  CAS  Google Scholar 

  15. Abe M, Ye J, Mishima M (2012) The chemistry of localized singlet 1,3-diradicals (biradicals): from putative intermediates to persistent species and unusual molecules with a pi-single bonded character. Chem Soc Rev 41:3808–3820

    Article  CAS  Google Scholar 

  16. Abe M (2013) Diradicals. Chem Rev 113:7011–7088

    Article  CAS  Google Scholar 

  17. Adam W, Harrer HM, Kita F, Nau WM (1997) Localized triplet diradicals as a probe for electronic substituent effects in benzyl-type radicals: the delta D scale. Pure Appl Chem 69:91–96

    CAS  Google Scholar 

  18. Lahti PM (ed) (1999) Magnetic properties of organic materials. Marcel Dekker, New York

    Google Scholar 

  19. Jain R, Sponsler MB, Coms FD, Dougherty DA (1988) Cyclobutanediyls: a new. Class of localized biradicals. Synthesis and EPR spectroscopy. J Am Chem Soc 110:1356–1366

    Article  CAS  Google Scholar 

  20. Engel PS (1980) Mechanism of the thermal and photochemical decomposition of azoalkanes. Chem Rev 80:99–150

    Article  CAS  Google Scholar 

  21. Buchwalter SL, Closs GL (1975) Electron-spin resonance study of matrix-isolated 1,3-cyclopentadiyl, a localized 1,3-carbon biradical. J Am Chem Soc 97:3857–3858

    Article  CAS  Google Scholar 

  22. Buchwalter SL, Closs GL (1979) Electron-spin resonance and CIDNP studies on 1,3-cyclopentandiyls – localized 1,3 carbon biradical system with a triplet ground-state – tunneling in carbon-carbon bond formation. J Am Chem Soc 101:4688–4694

    Article  CAS  Google Scholar 

  23. Conrad MP, Pitzer RM, Schaefer HF III (1979) Geometrical structure and energetics of Closs’s diradical: 1,3-cyclopentadiyl. J Am Chem Soc 101:2245–2246

    Article  CAS  Google Scholar 

  24. Dougherty DA (1991) Spin control in organic-molecules. Acc Chem Res 24:88–94

    Article  CAS  Google Scholar 

  25. Adam W, Harrer HM, Kita F, Nau WM (1998) The EPR spectroscopic D parameter of localized triplet diradicals as probe for electronic effects in benzyl-type monoradicals. Adv Photochem 24:205–254

    CAS  Google Scholar 

  26. Boden WT, Iwamura H, Berson JA (1994) Violations of Hund’s rule in non-Kekule hydrocarbons: theoretical prediction and experimental verification. Acc Chem Res 27:109–116

    Article  Google Scholar 

  27. Berson JA (1997) A new class of non-Kekule molecules with tunable singlet-triplet energy spacings. Acc Chem Res 30:238–244

    Article  CAS  Google Scholar 

  28. Matsuda K, Iwamura H (1998) Demonstration of the degeneracy of the singlet and triplet states in 2,3-dimethylenecyclohexane-1,4-diyl by measurement of its magnetic properties. J Chem Soc Perkin Trans 2: 1023–1026

    Google Scholar 

  29. (a) Nakano M, Minami T, Yoneda K, Muhammad S, Kishi R, Shigeta Y, Kubo T, Rougier L, Champagne B, Kamada K, Ohta K (2011) Giant enhancement of the second hyperpolarizabilities of open-shell singlet polyaromatic diphenalenyl diradicaloids by an external electric field and donor-acceptor substitution. J Phys Chem Lett 2:1094–1098. (b) Shimizu A, Nakano M, Hirao Y, Kubo T (2011) Experimental consideration of covalent bonding interactions in stacks of singlet biradicals. J Phys Org Chem 24:876–882

    Google Scholar 

  30. Hiroto S, Furukawa K, Shinokubo H, Osuka A (2006) Synthesis and biradicaloid character of doubly linked corrole dimers. J Am Chem Soc 128:12380–12381

    Article  CAS  Google Scholar 

  31. Goldberg AH, Doughterty DA (1983) Effects of through-bond and through-space interactions on singlet-triplet energy gaps in localized biradicals. J Am Chem Soc 105:284–290

    Article  CAS  Google Scholar 

  32. Borden WT, Davidson ER (1977) Some aspects of potential surface for singlet trimethylenemethane. J Am Chem Soc 99:4587–4594

    Article  CAS  Google Scholar 

  33. (a) Hoffmann R (1968) Triethylene and addition of methylene to ethylene. J Am Chem Soc 90:1475–1485. (b) Hoffmann R (1971) Interaction of orbitals through bonds. Acc Chem Soc 4:1–9

    Google Scholar 

  34. Hund FZ (1925) Concerning the interpretation of complex spectra, especially the elements scandium to nickel. Physik 33:345–371

    Article  CAS  Google Scholar 

  35. Xu JD, Hrovat DA, Borden WT (1994) Ab Initio calculations of the potential surfaces for the lowest singlet and triplet states of 2,2-difluorocyclopentane-1,3-diyl. The singlet diradical lies below the triplet. J Am Chem Soc 116:5425–5427

    Article  CAS  Google Scholar 

  36. Getty SJ, Hrovat DA, Borden WT (1994) Ab-Initio calculations on the stereomutation of 1,1-difluorocyclopropane – prediction of a substantial preference for coupled disrotation of the methylene groups. J Am Chem Soc 116:1521–1527

    Article  CAS  Google Scholar 

  37. Abe M, Adam W, Nau WM (1998) Photochemical generation and methanol trapping of localized 1,3 and 1,4 singlet diradicals derived from a spiroepoxy-substituted cyclopentane-1,3-diyl. J Am Chem Soc 120:11304–11310

    Article  CAS  Google Scholar 

  38. Abe M, Adam W, Heidenfelder T, Nau WM, Zhang X (2000) Intramolecular and intermolecular reactivity of localized singlet diradicals: the exceedingly long-lived 2,2-diethoxy-1,3-diphenylcyclopentane-1,3-diyl. J Am Chem Soc 122:2019–2026

    Article  CAS  Google Scholar 

  39. Skancke A, Hrovat DA, Borden WT (1998) Ab Initio calculations of the effects of geminal silyl substituents on the stereomutation of cyclopropane and on the singlet−triplet splitting in trimethylene. J Am Chem Soc 120:7079–7084

    Article  CAS  Google Scholar 

  40. Johnson WTG, Hrovat DA, Skancke A, Borden WT (1999) Ab initio calculations find 2,2-disilylcyclopentane-1,3-diyl is a singlet diradical with a high barrier to ring closure. Theor Chem Acc 102:207–225

    Article  CAS  Google Scholar 

  41. Abe M, Kawanami S, Ishihara C, Nojima M (2004) 2-Silyl group effect on the reactivity of cyclopentane-1,3-diyls. Intramolecular ring-closure versus silyl migration. J Org Chem 69:5622–5626

    Article  CAS  Google Scholar 

  42. Borden WT (1998) Effects of electron donation into C–F σ* orbitals: explanations, predictions and experimental tests. Chem Commun 1919–1925

    Google Scholar 

  43. Abe M, Hattori M, Takegami A, Masuyama A, Hayashi T, Seki S, Tagawa S (2006) Experimental probe for hyperconjugative resonance contribution in stabilizing the singlet state of 2,2-dialkoxy-1,3-diyls: regioselective 1,2-oxygen migration. J Am Chem Soc 128:8008–8014

    Article  CAS  Google Scholar 

  44. Abe M, Ishihara C, Nojima M (2004) 2-Silyl group effect on the reactivity of cyclopentane-1,3-diyls. Intramolecular ring-closure versus silyl migration. J Org Chem 68:1618–1621

    Article  Google Scholar 

  45. Abe M, Adam W, Hara M, Hattori M, Majima T, Nojima M, Tachibana K, Tojo S (2002) On the electronic character of localized singlet 2,2-dimethoxycyclopentane-1,3-diyl diradicals: substituent effects on the lifetime. J Am Chem Soc 124:6540–6541

    Article  CAS  Google Scholar 

  46. Abe M, Adam W, Borden WT, Hattori M, Hrovat DA, Nojima M, Nozaki K, Wirz J (2004) Effects of spiroconjugation on the calculated singlet-triplet energy gap in 2,2-dialkoxycyclopentane-1,3-diyls and on the experimental electronic absorption spectra of singlet 1,3-diphenyl derivatives. Assignment of the lowest-energy electronic transition of singlet cyclopentane-1,3-diyls. J Am Chem Soc 126:574–582

    Article  CAS  Google Scholar 

  47. Simmons HE, Fukunaga T (1967) Spirocojugation. Am Chem Soc 89:5208–5215

    Article  CAS  Google Scholar 

  48. (a) Niecke E, Fuchs A, Baumeister F, Nieger M, Schorller WW (1995) A P2C2 4-membered ring with unusual bonding – synthesis, structure, and ring-opening of A 1,3-diphosphacyclobutane-2,4-diyl. Angew Chem Int Ed 34:555–557. (b) Sebastian M, Nieger M, Szieberth D, Nyulászi L, Niecke E (2004) Synthesis and structure of a 1,3-diphosphacyclobutadienediide: an aniomesolytic fragmentation of a 1,3-diphosphetane-2,4-diyl in solution. Angew Chem Int Ed 43:637–641. (c) Niecke E, Fuchs A, Nieger M (1999) Valence isomerization of a 1,3-diphosphacyclobutane-2,4-diyl: photochemical ring closure to 2,4-diphosphabicyclo 1.1.0 butane and its thermal ring opening to gauche-1,4-diphosphabutadiene. Angew Chem Int Ed 38:3028–3031. (d) Schmidt O, Fuchs A, Gudat D, Nieger M, Hoffbauer W, Niecke E, Schoeller WW (1998) Valence isomerization in the solid state: from 1,3-diphosphacyclobutane-2,4-diyl to 1,2-dihydro-1,2-diphosphete. Angew Chem Int Ed 37:949–952

    Google Scholar 

  49. (a) Sugiyama CPH, Ito S, Yoshifuji M (2003) Synthesis of a 1,3-diphosphacyclobutane-2,4-diyl from Mes*. Angew Chem Int Ed 32:3802–3804. (b) Ito S, Miura J, Yoshifuji M, Arduengo AJ, III (2008) Poly(biradicals): oligomers of 1,3-diphosphacyclobutane-2,4-diyl units. Angew Chem Int Ed 47:6418–6421

    Google Scholar 

  50. (a)Scheschkewitz D, Amii H, Gornitzka H, Schoeller WW, Bourissou D, Bertrand G (2002) Singlet diradicals: from transition states to crystalline compounds. Science 295:1880–1881. (b) Amii H, Vranicar L, Gornitzka H, Bourissou D, Bertrand G (2004) Radical-type reactivity of the 1,3-dibora-2,4-diphosphoniocyclobutane-1,3-diyl. J Am Chem Soc 126:1344–1345. (c) Scheschkewitz D, Amii H, Gornitzka H, Schoeller WW, Bourissou D, Bertrand G (2004) Alpha-bond stretching: a static approach for dynamic process. Angew Chem Int Ed 43:585–587. (d) Gandon V, Bourg J.-B, Tham FS, Schoeller WW, Bertrand G, Angew Chem Int Ed 47:155–159. (e) Rodriguez A, Fuks G, Bourg JB, Bourissou D, Tham FS, Bertrand G (2008) 1,3-diborata-2,4-diphosphoniocyclobutane-1,3-diyls communicate through a para-phenylene linker. Dalton Trans 4482–4487. (f) Gandon V, Bourg J-B, Tham FS, Schoeller WW, Bertrand G (2008) The existence of two short-bond isomers for bicyclo[1.1.0]butane derivatives based on boron and phosphorus. Angew Chem Int Ed 47:155–159

    Google Scholar 

  51. Ma J, Ding Y, Hattori K, Inagaki S (2004) Theoretical designs of singlet localized 1,3-diradicals. J Org Chem 69:4245–4255

    Article  CAS  Google Scholar 

  52. Abe M, Ishihara C, Takegami A (2004) Theoretical calculations of the effects of 2-heavier group 14 element and substituents on the singlet-triplet energy gap in cyclopentane-1,3-diyls and computational prediction of the reactivity of singlet 2-silacyclopentane-1,3-diyls. J Org Chem 69:7250–7255

    Article  CAS  Google Scholar 

  53. (a) Takeuchi K, Ichinohe M, Sekiguchi A (2011) Access to a stable Si2N2 four-membered ring with non-kekule singlet biradical character from a disilyne. J Am Chem Soc 133:12478–12481. (b) Fuks G, Saffon N, Maron L, Bertrand G, Bourissou D (2009) Ionic-type reactivity of 1,3-dibora-2,4-diphosphoniocyclobutane-1,3-diyls: regio- and stereoselective addition of hydracids. J Am Chem Soc 131:13681–13689. (c) Cui C, Brynda M, Olmstead MM, Power PP (2004) Synthesis and characterization of the non-kekule, singlet biradicaloid Ar‘Ge(mu-NSiMe3)(2)GeAr ’ (Ar ’=2,6-dipp(2)C(6)H(3), dipp=2,6-i-Pr2C6H3). J Am Chem Soc 126:6510–6511. (d) Cox H, Hitchcock PB, Lappert MF, Peirssens LJ-M (2004) A 1,3-diaza-2,4-distannacyclobutanediide: synthesis, structure, and bonding. Angew Chem Int Ed 43:4500–4504

    Google Scholar 

  54. Adam W, Froehlich L, Nau WM, Korth H-G, Sustmann R (1993) Substituent effects on the zero-field splitting parameters of localized triplet 1,3-cyclopentanediyl biradicals. Angew Chem Int Ed 32:1339–1340

    Article  Google Scholar 

  55. Tokumura K, Udagawa M, Ozaki T, Itoh M (1987) Doublet-doublet fluorescence of benzyl, p-methylbenzyl and p-chlorobenzyl radicals in solution. Chem Phys Lett 141:558–563

    Google Scholar 

  56. Adam W, Borden WT, Burda C, Foster H, Heidenfelder T, Jeubes M, Hrovat DA, Kita F, Lewis SB, Scheutzow D, Wirz J (1998) Transient spectroscopy of a derivative of 2,2-difluoro-1,3-diphenylcyclopentane-1,3-diyl - A persistent localized singlet 1,3-diradical. J Am Chem Soc 120:593–594

    Article  CAS  Google Scholar 

  57. Creary X (2006) Super radical stabilizers. Acc Chem Res 39:761–771

    Google Scholar 

  58. (a) Abe M, Kubo E, Nozaki K, Matsuo T, Hayashi T (2006) An extremely long-lived singlet 4,4-dimethoxy-3,5-diphenylpyrazolidine-3,5-diyl derivative: a notable nitrogen-atom effect on intra- and intermolecular reactivity. Angew Chem Int Ed 45:7828–7831. (b) Abe M, Kubo E, Nozaki K, Matsuo T, Hayashi T (2012) Corrigendam, an extremely long-lived singlet 4,4-dimethoxy-3,5-diphenylpyrazolidine-3,5-diyl derivative: a notable nitrogen-atom effect on intra- and intermolecular reactivity. Angew Chem Int Ed 51:11924. (c) Nakamura T, Gagliardi L, Abe M (2010) Computational study of the cooperative effects of nitrogen and silicon atoms on the singlet-triplet energy spacing in 1,3-diradicals and the reactivity of their singlet states J Phys Org Chem 23:300–307

    Google Scholar 

  59. Nakamura T, Takegami A, Abe M (2010) Generation and intermolecular trapping of 1,2-Diaza-4-silacyclopentane-3,5-diyls in the denitrogenation of 2,3,5,6-tetraaza-7-silabicyclo 2.2.1 hept-2-ene: an experimental and computational study. J Org Chem 75:1956–1960

    Article  CAS  Google Scholar 

  60. Abe M, Ishihara C, Kwanami S, Masuyama A (2005) Novel substituent effects on the mechanism of the thermal denitrogenation of 2,3-diazabicyclo[2.2.1]hept-2-ene derivatives, stepwise versus concerted. J Am Chem Soc 127:10–11

    Article  CAS  Google Scholar 

  61. Maeda A, Oshita T, Abe M, Ishibashi T-A (2014) Time-resolved IR spectroscopy of 1,3-dicyanophenylcyclopentane-1,3-diyl diradicals: CN stretching wavenumber as a vibrational signature of radical character. J Phys Chem B 118:3991–3997

    Article  CAS  Google Scholar 

  62. (a) Hoffmann R, Alder RW, Wilcox CF (1970) Planar tetracoordinate carbon. J Am Chem Soc 92:4992–4993. (b) Cooper OJ, Wooles AJ, McMaster J, Lewis W, Blake AJ, Liddle ST (2010) A monomeric dilithio methandiide with a distorted trans-planar four-coordinate carbon. Angew Chem Int Ed 49:5570–5573. (c) Collins JB, Dill JD, Jemmis ED, Schleyer PvR, Seeger R, Pople JA (1976) Stabilization of planar tetracoordinate carbon. J Am Chem Soc 98:5419–5427. (d) Priyakumar UD, Sastry GN (2004) A system with three contiguous planar tetracoordinate carbons is viable: a computational study on a C6H62þ isomer. Tetrahedron Lett 45:1515–1517. (e) Deva Priyakumar U, Reddy AS, Sastry GN (2004) The design of molecules containing planar tetracoordinate carbon. Tetrahedron Lett 45:2495–2498. (f) Sateesh B, Reddy AS, Sastry GN (2007) Towards design of the smallest planar tetracoordinate carbon and boron systems. J Comput Chem 28:335–343

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manabu Abe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Abe, M., Hatano, S. (2015). Localized Singlet 1,3-Diradicals. In: Akasaka, T., Osuka, A., Fukuzumi, S., Kandori, H., Aso, Y. (eds) Chemical Science of π-Electron Systems. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55357-1_17

Download citation

Publish with us

Policies and ethics