Skip to main content

Möbius Aromatic and Antiaromatic Expanded Porphyrins

  • Chapter
Chemical Science of π-Electron Systems

Abstract

Since our first report in 2008, meso-aryl-substituted expanded porphyrins have been recognized as a nice platform to realize Möbius aromatic and antiaromatic molecules. An increasing number of Möbius aromatic and antiaromatic expanded porphyrins have been produced from meso-aryl-substituted expanded porphyrins by metal complexation, fusion reaction, protonation, and deprotonation. [28]Hexaphyrin(1.1.1.1.1.1) and [32]heptaphyrin(1.1.1.1.1.1.1) have been shown to exist as a dynamic equilibrium between Hückel antiaromatic and Möbius aromatic conformers in solution, in which distribution of conformers is dependent upon temperature and solvent polarity. Regioselective peripheral functionalizations of Möbius aromatic expanded porphyrins have been also developed. Möbius aromatic and antiaromatic expanded porphyrins display optical and electronic properties that are analogous to those of usual aromatic and antiaromatic porphyrinoids, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rzepa HS (2005) Möbius aromaticity and delocalization. Chem Rev 105:3697–3715

    Article  CAS  Google Scholar 

  2. Herges R (2006) Topology in chemistry: designing Möbius molecules. Chem Rev 106:4820–4842

    Article  CAS  Google Scholar 

  3. Jux N (2008) The porphyrin twist: Hückel and Möbius aromaticity. Angew Chem Int Ed 47:2543–2546

    Article  CAS  Google Scholar 

  4. Yoon ZS et al (2009) Möbius aromaticity and antiaromaticity in expanded porphyrins. Nat Chem 1:113–122

    Article  CAS  Google Scholar 

  5. Heilbronner E (1964) Hückel molecular orbitals of Möbius-type conformations of annulenes. Tetrahedron Lett 5:1923–1928

    Article  Google Scholar 

  6. Zimmerman HE (1966) On molecular orbital correlation diagrams, the occurrence of Möbius systems in cyclization reactions, and factors controlling ground- and excited-states reactions. I. J Am Chem Soc 88:1564–1565

    Article  CAS  Google Scholar 

  7. Herges R (2007) Aromatics with a twist. Nature 450:36–37

    Article  CAS  Google Scholar 

  8. Stępień M et al (2011) Figure eights, Möbius bands, and more: Conformation and aromaticity of porphyrinoids. Angew Chem Int Ed 50:4288–4340

    Article  Google Scholar 

  9. Saito S, Osuka A (2011) Expanded porphyrins: Intriguing structures, electronic properties, and reactivities. Angew Chem Int Ed 50:4342–4373

    Article  CAS  Google Scholar 

  10. Osuka A, Saito S (2011) Expanded porphyrins and aromaticity. Chem Commun 47:4330–4339

    Article  CAS  Google Scholar 

  11. Stępień M et al (2007) Expanded porphyrin with a split personality: a Hückel–Möbius aromaticity switch. Angew Chem Int Ed 46:7869–7873

    Article  Google Scholar 

  12. Shimzu S, Osuka A (2006) Metalation chemistry of meso-aryl-substituted expanded porphyrins. Eur J Inorg Chem 2006(7):1319–1335

    Article  Google Scholar 

  13. Tanaka Y et al (2008) Metalation of expanded porphyrins: a chemical trigger used to produce molecular twisting and Möbius aromaticity. Angew Chem Int Ed 47:681–684

    Article  CAS  Google Scholar 

  14. Shin J-Y et al (2010) Aromaticity and photophysical properties of various topology-controlled expanded porphyrins. Chem Soc Rev 39:2751–2767

    Article  CAS  Google Scholar 

  15. Mori S et al (2005) Group 10 metal complexes of meso-aryl-substituted [26]hexaphyrins with a metal-carbon bond. Inorg Chem 44:4127–4129

    Article  CAS  Google Scholar 

  16. Moriya K (2010) Boron(III) Induced skeletal rearrangement of hexaphyrin(1.1.1.1.1.1) to hexaphyrin(2.1.1.0.1.1). Angew Chem Int Ed 49:4297–4300

    Article  CAS  Google Scholar 

  17. Moriya K et al (2011) A Möbius aromatic Pd(II) complex of [28]hexaphyrin(2.1.1.0.1.1). Chem Lett 40:455–457

    Article  CAS  Google Scholar 

  18. Park JK et al (2008) Möbius aromaticity in N-fused [24]pentaphyrin upon Rh(I) metalation. J Am Chem Soc 130:1824–1825

    Article  CAS  Google Scholar 

  19. Tokuji S et al (2009) Facile formation of a benzopyrane-fused [28]hexaphyrin that exhibits distinct Möbius aromaticity. J Am Chem Soc 131:7240–7241

    Article  CAS  Google Scholar 

  20. Inoue M et al (2009) Thermal fusion reactions of meso-(3-thienyl) groups in [26]hexaphyrins to produce Möbius aromatic molecules. Angew Chem Int Ed 48:6687–6690

    Article  CAS  Google Scholar 

  21. Higashino T et al (2010) Singly N-fused Möbius aromatic [28]hexaphyrins(1.1.1.1.1.1). J Org Chem 75:7958–7961

    Article  CAS  Google Scholar 

  22. Saito S et al (2008) Protonation-triggered conformational changes to Möbius aromatic [32]heptaphyrins(1.1.1.1.1.1.1). Angew Chem Int Ed 47:9657–9660

    Article  CAS  Google Scholar 

  23. Lim JM et al (2010) Protonated [4n] and [4n + 2] octaphyrins choose their Möbius/Hückel aromatic topology. J Am Chem Soc 132:3105–3114

    Article  CAS  Google Scholar 

  24. Ishida S et al (2014) Diprotonated [28]hexaphyrins(1.1.1.1.1.1): triangular antiaromatic macrocycles. Angew Chem Int Ed 53:3427–3431

    Article  CAS  Google Scholar 

  25. Koide T et al (2009) Multiple conformational changes of β-tetraphenyl meso-hexakis(pentafluorophenyl) substituted [26] and [28]hexaphyrins(1.1.1.1.1.1). Chem Commun (40):6047–6049

    Google Scholar 

  26. Koide T, Osuka A (2010) Möbius aromatic palladium(II) complexes of a β–tetraphenyl meso-hexakis(pentafluorophenyl) substituted hexaphyrin(1.1.1.1.1.1). Bull Chem Soc Jpn 83:877–879

    Article  CAS  Google Scholar 

  27. Cha W-Y et al (2014) Deprotonation induced formation of Möbius aromatic [32]heptaphyrins. Chem Commun 50:548–550

    Article  CAS  Google Scholar 

  28. Sankar J et al (2008) Unambiguous identification of Möbius aromaticity for meso-aryl-substituted [28]hexaphyrins(1.1.1.1.1.1). J Am Chem Soc 130:13568–13579

    Article  CAS  Google Scholar 

  29. Mori S, Osuka A (2005) Aromatic and antiaromatic gold(III) hexaphyrins with multiple gold-carbon bonds. J Am Chem Soc 127:8030–8031

    Article  CAS  Google Scholar 

  30. Yoon M-C (2011) Solvent-dependent aromatic versus antiaromatic conformational switching in meso-(heptakis)pentafluorophenyl [32]heptaphyrin. Chem Eur J 17:6707–6715

    Article  CAS  Google Scholar 

  31. Pacholska-Dudziak E (2008) Palladium vacataporphyrin reveals conformational rearrangements involving Hückel and Möbius macrocyclic topologies. J Am Chem Soc 130:6182–6195

    Article  CAS  Google Scholar 

  32. Miura T et al (2010) Phosphorus complexes of the first expanded isophlorins. Chem Eur J 16:55–59

    Article  CAS  Google Scholar 

  33. Higashino T (2010) Möbius antiaromatic bisphosphorus complexes of [30]hexaphyrins. Angew Chem Int Ed 49:4950–4954

    Article  CAS  Google Scholar 

  34. Higashino T (2012) A Möbius antiaromatic complex as a kinetically controlled product in phosphorus insertion to a [32]heptaphyrin. Angew Chem Int Ed 51:13105–13108

    Article  CAS  Google Scholar 

  35. Inoue M, Osuka A (2010) Redox-induced palladium migrations that allow reversible topological changes between palladium(II) complexes of Möbius aromatic [28]hexaphyrin and Hückel aromatic [26]hexaphyrin. Angew Chem Int Ed 49:9488–9491

    Article  CAS  Google Scholar 

  36. Yoneda T et al (2013) Regioselective fabrications of a Möbius aromatic [28]hexaphyrin palladium(II) complex. J Porphyrins Phthalocyanines 16:665–672

    Article  Google Scholar 

  37. Tanaka T, Osuka A (2012) Regioselective palladation of a Möbius aromatic [28]hexaphyrin(1.1.1.1.1.1) PdII complex. Chem Eur J 18:7036–7040

    Article  CAS  Google Scholar 

  38. Inoue M et al (2011) Möbius aromatic [28]hexaphyrin phosphonium adducts. Chem Eur J 17:9028–9031

    Article  CAS  Google Scholar 

  39. Tanaka T et al (2010) Metal complexes of chiral Möbius aromatic [28]hexaphyrin(1.1.1.1.1.1): enantiomeric separation, absolute stereochemistry, and asymmetric synthesis. Angew Chem Int Ed 49:6619–6622

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsuhiro Osuka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Tanaka, T., Osuka, A. (2015). Möbius Aromatic and Antiaromatic Expanded Porphyrins. In: Akasaka, T., Osuka, A., Fukuzumi, S., Kandori, H., Aso, Y. (eds) Chemical Science of π-Electron Systems. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55357-1_15

Download citation

Publish with us

Policies and ethics