Skip to main content
  • 1845 Accesses

Abstract

This chapter briefly summarizes the syntheses, structure–property relationships, and applications of some heteroatom-modified porphyrinoids, namely, (i) meso-phosphanyl-, meso-phosphinyl-, and meso-sulfinylporphyrins and (ii) β-unsubstituted 5,15-diazaporphyrins (DAPs), constructed by my research group. The meso-functionalized porphyrins were prepared by C–P and C–S cross-coupling reactions of meso-iodoporphyrins with Ph2PH, R2P(O)H, and RSH, and the DAPs were prepared from bis(dibromodipyrrin)–metal complexes and metal azides using metal-templating methods. Treatment of meso-phosphanylporphyrins with palladium(II) and platinum(II) salts produces two types of phosphametallacycle-fused diporphyrins via regioselective β-C–H activation. The palladium- and platinum-linked diporphyrins exhibit characteristic optical and electrochemical properties, resulting from the dπ–pπ interactions of the peripheral C–M–C covalent bonds (M = Pd, Pt), whereas the metalloporphyrin-appended phosphapalladacycles behave as precatalysts for high-temperature Heck reactions. meso-Phosphinyl- and meso-sulfinyl-zincporphyrins readily undergo self-assembly in solution to form cofacial dimers connected by complementary X=O–Zn coordination bonds (X = P, S). The meso-(phenylsulfinyl)porphyrin exists as a diastereomeric mixture of homo- and heterodimers, reflecting stable S chirality at the periphery. The β-unsubstituted DAPs are converted to several types of covalently linked DAP dimers using homo- and cross-coupling reactions. The optical and electrochemical properties of the π systems have been found to vary widely depending on the spacers connecting the two DAP rings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Matano Y, Nakabuchi T, Miyajima T, Imahori H, Nakao H (2006) Synthesis of a phosphorus-containing hybrid porphyrin. Org Lett 8:5713

    Article  CAS  Google Scholar 

  2. Matano Y, Nakashima M, Nakabuchi T, Imahori H, Fujishige S, Nakao H (2008) Monophosohaporphyrins: oxidative p-extension at the peripherally-fused carbocycle of the phosphaporphyrin ring. Org Lett 10:553

    Article  CAS  Google Scholar 

  3. Matano Y, Miyajima T, Ochi N, Nakabuchi T, Shiro M, Nakao Y, Sakaki S, Imahori H (2008) Syntheses, structures, and coordination chemistry of phosphole-containing hybrid calixphyrins: promising macrocyclic P,N2,X-mixed donor ligands for designing reactive transition metal complexes. J Am Chem Soc 130:990

    Article  CAS  Google Scholar 

  4. Matano Y, Nakabuchi T, Fujishige S, Nakano H, Imahori H (2008) Redox-coupled complexation of 23-phospha-21-thiaporphyrin with group 10 metals: a convenient access to stable core-modified isophlorin metal complexes. J Am Chem Soc 130:16446

    Article  CAS  Google Scholar 

  5. Nakabuchi T, Nakashima M, Fujishige S, Nakano H, Matano Y, Imahori H (2010) Synthesis and reactions of phosphaporphyrins: dramatic alteration of p-electronic structures caused by chemical modification of core-phosphorus atom. J Org Chem 75:375

    Article  CAS  Google Scholar 

  6. Matano Y, Imahori H (2009) Phosphole-containing calixpyrroles, calilxphyrins, and porphyrins: synthesis and coordination chemistry. Acc Chem Res 42:1193

    Article  CAS  Google Scholar 

  7. Matano Y, Nakabuchi T, Imahori H (2010) Synthesis, structures, and aromaticity of phosphole-containing porphyrins and their metal complexes. Pure Appl Chem 82:583

    Article  CAS  Google Scholar 

  8. Sanders JKM, Bampos N, Clyde-Watson Z, Darling SL, Hawley JC, Kim HJ, Mak CC, Webb SJ (2000) In: Kadish KM, Smith KM, Guilard R (eds) The porphyrin handbook, vol 3. Academic, San Diego, pp 3–48

    Google Scholar 

  9. Chambron JC, Heitz V, Sauvage JP (2000) In: Kadish KM, Smith KM, Guilard R (eds) The porphyrin handbook, vol 6. Academic, San Diego, pp 1–42

    Google Scholar 

  10. Sanders JKM (2000) In: Kadish KM, Smith KM, Guilard R (eds) The porphyrin handbook, vol 3. Academic, San Diego, pp 347–368

    Google Scholar 

  11. Wojaczyński J, Latos-Grażyński L (2000) Poly- and oligometalloporphyrins associated through coordination. Coord Chem Rev 204:113

    Article  Google Scholar 

  12. Harvey PD (2003) In: Kadish KM, Smith KM, Guilard R (eds) The porphyrin handbook, vol 18. Academic, San Diego, pp 63–250

    Chapter  Google Scholar 

  13. Drain CM, Varotto A, Radivojevic I (2009) Self-organized porphyrinic materials. Chem Rev 109:1630

    Article  CAS  Google Scholar 

  14. Beletskaya I, Tyurin VS, Tsivadze AY, Guilard R, Stern C (2009) Supramolecular chemistry of metalloporphyrins. Chem Rev 109:1659

    Article  CAS  Google Scholar 

  15. Aratani N, Kim D, Osuka A (2009) Discrete cyclic porphyrin arrays as artificial light-harvesting antenna. Acc Chem Res 42:1922

    Article  CAS  Google Scholar 

  16. Darling SL, Stulz E, Feeder N, Bampos N, Sanders JKM (2000) Phosphine-substituted porphyrins as supramolecular building blocks. New J Chem 24:261

    Article  CAS  Google Scholar 

  17. Stulz E, Scott SM, Ng YF, Bond AD, Teat SJ, Darling SL, Feeder N, Sanders JKM (2003) Construction of multiporphyrin arrays using ruthenium and rhodium coordination to phosphines. Inorg Chem 42:6564

    Article  CAS  Google Scholar 

  18. Stulz E, Maue M, Scott SM, Mann BE, Sanders JKM (2004) Ru(II) and Rh(III) porphyrin complexes of primary phosphine-substituted porphyrins. New J Chem 28:1066

    Article  CAS  Google Scholar 

  19. Evans B, Smith KM (1977) Novel meso-substitution reactions of zinc(II) octaethylporphyrin. Tetrahedron Lett 18:3079

    Article  Google Scholar 

  20. Smith KM, Barnett GH, Evans B, Martynenko Z (1979) Novel meso-substitution reactions of metalloporphyrins. J Am Chem Soc 101:5953

    Article  CAS  Google Scholar 

  21. Ruhlmann L, Gross M, Giraudeau A (2003) Bisporphyrins with bischlorin features obtained by direct anodic coupling of porphyrins. Chem Eur J 9:5085

    Article  CAS  Google Scholar 

  22. Atefi F, Locos OB, Senge MO, Arnold DP (2006) meso-Iodo- and meso-iodovinylporphyrins via organopalladium porphyrins and the crystal structure of 5-iodo-10,20-diphenylporphyrin. J Porphyrins Phthalocyanines 10:176

    Article  CAS  Google Scholar 

  23. Atefi F, McMurtrie JC, Turner P, Duriska M, Arnold DP (2006) meso-Porphyrinylphosphine oxides: Mono- and bidentate ligands for supramolecular chemistry and the crystal structures of monomeric {[10,20-diphenylporphyrinatonickel(II)-5,15-diyl]-bis-[P(O)Ph2] and polymeric self-coordinated {[10,20-diphenylporphyrinatozinc(II)-5,15-diyl]-bis-[P(O)Ph2]}. Inorg Chem 45:6479

    Article  CAS  Google Scholar 

  24. Fujimoto K, Yoneda T, Yorimitsu H, Osuka A (2014) Synthesis and catalytic activities of porphyrin-based PCP pincer complexes. Angew Chem Int Ed 126:1145

    Article  Google Scholar 

  25. Binstead RA, Crossley MJ, Hush NS (1991) Modulation of valence orbital levels of metalloporphyrins by β-substitution: evidence from spectroscopic and electrochemical studies of 2-substituted metallo-5,10,15,20-tetraphenylporphyrin. Inorg Chem 30:1259

    Article  CAS  Google Scholar 

  26. Gao GY, Colvin AJ, Chen Y, Zhang XP (2004) Synthesis of meso-arylsulfanyl- and alkylsulfanyl-substituted porphyrins via palladium-mediated C-S bond formation. J Org Chem 69:8886

    Article  CAS  Google Scholar 

  27. Shen DM, Liu C, Chen XG, Chen QY (2009) Facile and efficient hypervalent iodine(III)-mediated meso-functionalization of porphyrins. J Org Chem 74:206

    Article  CAS  Google Scholar 

  28. Chen Q, Zhu YZ, Fan QJ, Zhang SC, Zheng JY (2014) Simple and catalyst-free synthesis of meso-O-, -S-, and -C-substituted porphyrins. Org Lett 16:1590

    Article  CAS  Google Scholar 

  29. Matano Y, Matsumoto K, Nakao Y, Uno H, Sakaki S, Imahori H (2008) Regioselective β-metalation of meso-phosphanylporphyrins. Structure and optical properties of porphyrin dimers linked by peripherally fused phosphametallacycles. J Am Chem Soc 130:4588

    Article  CAS  Google Scholar 

  30. Matano Y, Matsumoto K, Shibano T, Imahori H (2011) Porphyrin-appended phosphapalladacycle precatalysts: effects of central metals on the catalytic activity in a high-temperature Heck reaction. J Porphyrins Phthalocyanines 15:1172

    Article  CAS  Google Scholar 

  31. Matano Y, Matsumoto K, Terasaka Y, Hotta H, Araki Y, Ito O, Shiro M, Sasamori T, Tokitoh N, Imahori H (2007) Synthesis, structures, and properties of meso-phosphorylporphyrins. Self-assembly through P -oxo-to-zinc coordination. Chem Eur J 13:891

    Article  CAS  Google Scholar 

  32. Matano Y, Shinokura T, Matsumoto K, Imahori H, Nakano H (2007) Synthesis and aggregation behavior of meso-sulfinylporphyrins: Evaluation of the S-chirality effects on the self-organization to S -oxo-tethered cofacial porphyrin dimers. Chem Asian J 2:1417

    Article  CAS  Google Scholar 

  33. Allen DW, Taylor BF (1982) The chemistry of heteroarylphosphorus compounds. Part 15. Phosphorus-31 nuclear magnetic resonance studies of the donor properties of heteroarylphosphines towards selenium and platinum(II). J Chem Soc Dalton Trans 51

    Google Scholar 

  34. Grim SO, Wheatland DA, McFarlane W (1967) Phosphorus-31 nuclear magnetic resonance study of tertiary phosphine derivatives of group VI metal carbonyls. J Am Chem Soc 89:5573

    Article  CAS  Google Scholar 

  35. Hartnell RD, Arnold DP (2004) Peripherally h 1-platinated organometallic porphyrins as building blocks for multiporphyrin arrays. Organometallics 23:391

    Article  CAS  Google Scholar 

  36. Yamaguchi S, Katoh T, Shinokubo H, Osuka A (2008) Pt(II)- and Pt(IV)-bridged cofacial diporphyrins via carbon-transition metal s-bonds. J Am Chem Soc 130:14440

    Article  CAS  Google Scholar 

  37. Song J, Aratani N, Heo JH, Kim D, Shinokubo H, Osuka A (2010) Directly Pd(II)-bridged porphyrin belts with remarkable curvatures. J Am Chem Soc 132:11868

    Article  CAS  Google Scholar 

  38. Matano Y, Matsumoto K, Hayashi H, Nakao Y, Kumpulainen T, Chukharev V, Tkachenko NV, Lemmetyinen H, Shimizu S, Kobayashi N, Sakamaki D, Ito A, Tanaka K, Imahori H (2012) Effects of carbon -metal -carbon linkages on the optical, photophysical, and electrochemical properties of phosphametallacycle-linked coplanar porphyrin dimers. J Am Chem Soc 134:1825

    Article  CAS  Google Scholar 

  39. Herrmann WA, Brossmer C, Öfele K, Reisinger CP, Priermeier T, Beller M, Fischer H (1995) Palladacycles as structurally defined catalysts for the Heck olefination of chloro- and bromoarenes. Angew Chem Int Ed Engl 34:1844

    Article  CAS  Google Scholar 

  40. Beletskaya IP, Cheprakov AV (2004) Palladacycles in catalysis – a critical survey. J Organomet Chem 689:4055

    Article  CAS  Google Scholar 

  41. de Vries JG (2006) A unifying mechanism for all high-temperature Heck reactions. The role of palladium colloids and anionic species. Dalton Trans 421

    Google Scholar 

  42. Phan NTS, van der Sluys M, Jones CW (2006) On the nature of the active species in palladium catalyzed Mizoroki -Heck and Suzuki -Miyaura couplings – homogeneous or heterogeneous catalysis, a critical review. Adv Synth Catal 348:609

    Article  CAS  Google Scholar 

  43. Suijkerbuijk BMJM, Herreras Martínez SD, van Koten G, Klein Gebbink RJM (2008) Hetero-multimetallic tetrakis(SCS-pincer palladium)-(metallo)porphyrin hybrids. Tunable precatalysts in a Heck reaction. Organometallics 27:534

    Article  CAS  Google Scholar 

  44. Yamaguchi S, Katoh T, Shinokubo H, Osuka A (2007) Porphyrin pincer complexes: peripherally cyclometalated porphyrins and their catalytic activities controlled by central metals. J Am Chem Soc 129:6392

    Google Scholar 

  45. Kobayashi N (2000) In: Kadish KM, Smith KM, Guilard R (eds) The porphyrin handbook, vol 2. Academic, San Diego, pp 301–360

    Google Scholar 

  46. Rodríguez-Morgade MS, de la Torre G, Torres T (2003) In: Kadish KM, Smith KM, Guilard R (eds) The porphyrin handbook, vol 15. Academic, San Diego, pp 125–159

    Chapter  Google Scholar 

  47. Ishii K, Kobayashi N (2003) In: Kadish KM, Smith KM, Guilard R (eds) The porphyrin handbook, vol 16. Academic, San Diego, pp 1–42

    Chapter  Google Scholar 

  48. Mack J, Stillman MJ (2003) In: Kadish KM, Smith KM, Guilard R (eds) The porphyrin handbook, vol 16. Academic, San Diego, pp 43–116

    Chapter  Google Scholar 

  49. Ogata H, Fukuda T, Nakai K, Fujimura Y, Neya S, Stuzhin PA, Kobayashi N (2004) Absorption, magnetic circular dichroism, IR spectra, electrochemistry, and molecular orbital calculations of monoaza- and opposite diazaporphyrins. Eur J Inorg Chem 1621

    Google Scholar 

  50. Pan N, Bian Y, Fukuda T, Yokoyama M, Li R, Neya S, Jiang J, Kobayashi N (2004) Homoleptic lanthanide triple-deckers of 5,15-diazaporphyrin with D2h symmetry. Inorg Chem 43:8242

    Article  CAS  Google Scholar 

  51. Pan N, Bian Y, Yokoyama M, Li R, Fukuda T, Neya S, Jiang J, Kobayashi N (2008) Sandwich-type heteroleptic opposite-(diazaporphyrinato)cerium complexes: synthesis, spectroscopy, structure, and electrochemistry. Eur J Inorg Chem 5519

    Google Scholar 

  52. Stuzhin PA, Nefedov SE, Kumeev RS, Ul-Haq A, Minin VV, Ivanova SS (2010) Effects of solvation on the spin state of iron(III) in 2,8,12,18-tetrabutyl-3,7,13,17-tetramethyl-5,10-diazaporphyrinatoiron(III) chloride. Inorg Chem 49:4802

    Article  CAS  Google Scholar 

  53. Stuzhin PA, Ul-Haq A, Nefedov SE, Kumeev RS, Koifman OI (2011) Synthesis and study of the binuclear m-oxodiiron(III) complexes of 5-monoaza- and 5,15-diaza-substituted β-octaalkylporphyrins. Eur J Inorg Chem 2567

    Google Scholar 

  54. Shinmori H, Kodaira F, Matsugo S, Kawabata S, Osuka A (2005) Photosensitizing properties of diazaporphyrin derivatives for singlet oxygen generation. Chem Lett 34:322

    Article  CAS  Google Scholar 

  55. Ohgo Y, Neya S, Uekusa H, Nakamura M (2006) An isocyanide probe for heme electronic structure: bis(tert-butylisocyanide) complex of diazaporphyrin showing a unique (dxy)2(dxz, dyz)3 ground state. Chem Commun 4590

    Google Scholar 

  56. Okujima T, Jin G, Otsubo S, Aramaki S, Ono N, Yamada H, Uno H (2011) Tetrabenzodiazaporphyrin: the semiconducting hybrid of phthalocyanine and tetrabenzoporphyrin. J Porphyrins Phthalocyanines 15:697

    Article  CAS  Google Scholar 

  57. Matano Y, Shibano T, Nakano H, Imahori H (2012) Nickel(II) and copper(II) complexes of β-unsubstituted 5,15-diazaporphyrins and pyridazine-fused diazacorrinoids: metal-template syntheses and peripheral functionalizations. Chem Eur J 18:6208

    Article  CAS  Google Scholar 

  58. Harris RLN, Johnson AW, Kay IT (1966) A stepwise synthesis of unsymmetrical porphyrins. J Chem Soc C 22

    Google Scholar 

  59. Khelevina OG, Chizhova NV, Stuzhin PA, Semeikin AS, Berezin BD (1997) Acid forms of diazaporphyrines in non-aqueous media. Russ J Phys Chem 71:74

    Google Scholar 

  60. Horie M, Hayashi Y, Yamaguchi S, Shinokubo H (2012) Synthesis of nickel(II) azacorroles by Pd-catalyzed amination of a,a'-dichlorodipyrrin NiII complex and their properties. Chem Eur J 18:5919

    Article  CAS  Google Scholar 

  61. Matano Y, Shibano T, Nakano H, Kimura Y, Imahori H (2012) Nickel(II) and copper(II) complexes of β-unsubstituted 5,15-diazaporphyrins and pyridazine-fused diazacorrinoids: metal-template syntheses and peripheral functionalizations. Inorg Chem 51:12879

    Article  CAS  Google Scholar 

  62. Matano Y, Fujii D, Shibano T, Furukawa K, Nakano H, Higashino T, Imahori H (2014) Covalently linked 5,15-diazaporphyrin dimers: promising scaffolds for highly conjugated azaporphyrin π-system. Chem Eur J 20:3342

    Article  CAS  Google Scholar 

  63. Hata H, Shinokubo H, Osuka A (2005) Highly regioselective Ir-catalyzed β-borylation of porphyrins via C-H bond activation and construction of β-β-linked diporphyrin. J Am Chem Soc 127:8264

    Article  CAS  Google Scholar 

  64. Cho S, Yoon MC, Lim JM, Kim P, Aratani N, Nakamura Y, Ikeda T, Osuka A, Kim D (2009) Structural factors determining photophysical properties of directly linked zinc(II) porphyrin dimers: linking position, dihedral angle, and linkage length. J Phys Chem B 113:10619

    Article  CAS  Google Scholar 

  65. Greiner SP, Rowlands DL, Kreilick RW (1992) EPR and ENDOR study of selected porphyrin- and phthalocyanine-copper complexes. J Phys Chem 96:9132

    Article  CAS  Google Scholar 

  66. Ikeue T, Furukawa K, Hata H, Aratani N, Shinokubo H, Kato T, Osuka A (2005) The importance of a β-β bond for long-range antiferromagnetic coupling in directly linked copper(ii) and silver(ii) diporphyrins. Angew Chem Int Ed 44:6899

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshihiro Matano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Matano, Y. (2015). Heteroatom-Modified Porphyrinoids. In: Akasaka, T., Osuka, A., Fukuzumi, S., Kandori, H., Aso, Y. (eds) Chemical Science of π-Electron Systems. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55357-1_13

Download citation

Publish with us

Policies and ethics