Skip to main content

Tuning Physical Properties and Structures of π-Electron System Formed by Single-Wall Carbon Nanotubes with Selected Chiralities

  • Chapter
Chemical Science of π-Electron Systems
  • 1854 Accesses

Abstract

Single-wall carbon nanotubes (SWCNTs) are rolled graphene tubes with a diameter of approximately 1.0 nm and represent a model for one-dimensional π-electron systems. SWCNTs exhibit various remarkable physical properties depending on their chirality. In this chapter, the physical properties of bulk SWCNT assemblies with a selected chirality are discussed. First, several remarkable properties such as optical, conducting, and thermoelectric properties are described. Then, how to tune their properties by electric double-layer techniques (or electrochemical doping techniques) is described. Next, how to control the charge in molecules encapsulated inside the π-nanospace of SWCNTs is demonstrated. Finally, how to produce ordered π-electron system using SWCNTs, i.e., aligned assemblies of SWCNTs, with a selected chirality is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bockrath M, Cobden D, Lu J, Rinzler A, Smalley R, Balents L, McEuen P (1999) Luttinger-liquid behaviour in carbon nanotubes. Nature 397:598–601

    Google Scholar 

  2. Saito R, Dresselhaus G, Dresselhaus MS (1998) Physical properties of carbon nanotubes. Imperial College Press, London

    Book  Google Scholar 

  3. Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363(603)

    Google Scholar 

  4. Arnold M, Green A, Hulvat J, Stupp S, Hersam M (2006) Sorting carbon nanotubes by electronic structure using density differentiation. Nat Nanotechnol 1:60

    Article  CAS  Google Scholar 

  5. Ghosh S, Bachilo S, Weisman R (2010) Advanced sorting of single-walled carbon nanotubes by nonlinear density-gradient ultracentrifugation. Nat Nanotechnol 5:443

    Article  CAS  Google Scholar 

  6. Kawai M, Kyakuno H, Suzuki T, Igarashi T, Suzuki H, Okazaki T, Maniwa Y, Yanagi K (2012) Single chirality extraction of single-wall carbon nanotubes for the encapsulation of organic molecules. J Am Chem Soc 134:9545

    Article  CAS  Google Scholar 

  7. Moshammer K, Hennrich F, Kappes M (2009) Selective suspension in aqueous sodium dodecyl sulfate according to electronic structure type allows simple separation of metallic from semiconducting single-wall carbon nanotubes. Nano Res 2:599

    Article  CAS  Google Scholar 

  8. Liu H, Nishide D, Tanaka T, Kataura H (2011) Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography. Nat Commun 2:1

    Article  Google Scholar 

  9. Hitosugi S, Nakanishi W, Yamasaki T, Isobe H (2011) Bottom-up synthesis of finite models of helical (n, m)-single-wall carbon nanotubes. Nat Commun 2:492

    Article  Google Scholar 

  10. Omachi H, Matsuura S, Segawa Y, Itami K (2010) A modular and size-selective synthesis of [n]cycloparaphenylenes: a step toward the selective synthesis of [n, n] single-walled carbon nanotubes. Angew Chem Int Ed 49:10202–10205

    Article  CAS  Google Scholar 

  11. Yang F, Wang X, Zhang D, Yang J, Luo D, Xu Z, Wei J, Wang J, Xu Z, Peng F, Li X, Li R, Li Y, Li M, Bai X, Ding F, Li Y (2014) Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts. Nature 510(522)

    Google Scholar 

  12. Sanchez-Valencia J, Dienel T, Groning O, Shorubalko I, Mueller A, Jansen M, Amsharov K, Ruffieux P, Fasel R (2014) Controlled synthesis of single-chirality carbon nanotubes. Nature 512(61)

    Google Scholar 

  13. Yanagi K, Moriya R, Yomogida Y, Takenobu T, Naito Y, Ishida T, Kataura H, Matsuda K, Maniwa Y (2011) Electrochromic carbon electrodes: controllable visible color changes in metallic single-wall carbon nanotubes. Adv Mater 23:2811–2814

    Article  CAS  Google Scholar 

  14. Yanagi K, Miyata Y, Kataura H (2008) Optical and conductive characteristics of metallic single-wall carbon nanotubes with three basic colors; cyan, magenta, and yellow. Appl Phys Express 1:034003–034006

    Article  Google Scholar 

  15. Kazaoui S, Minami N, Matsuda N, Kataura H, Achiba Y (2001) Electrochemical tuning of electronic states in single-wall carbon nanotubes studied by in situ absorption spectroscopy and ac resistance. Appl Phys Lett 78:3433

    Article  CAS  Google Scholar 

  16. Kalbac M, Green A, Hersam M, Kavan L (2010) Tuning of sorted double walled carbon nanotubes by electrochemical charging. ACS Nano 4:459

    Article  CAS  Google Scholar 

  17. Kavan L, Rapta P, Dunsch L, Bronikowski M, Willis P, Smally R (2001) Electrochemical tuning of electronic structure of single-walled carbon nanotubes: in-situ Raman and Vis-NIR study. J Phys Chem B 105:10764

    Article  CAS  Google Scholar 

  18. Tanaka Y, Hirano Y, Niidome Y, Kato K, Saito S, Nakashima N (2009) Experimentally determined redox potentials of individual (n, m) single walled carbon nanotubes. Angew Chem Int Ed 48:7655

    Article  CAS  Google Scholar 

  19. Yanagi K, Kanda S, Oshima Y, Kitamura Y, Kawai H, Yamamoto T, Takenobu T, Nakai Y, Maniwa Y (2014) Tuning of the thermoelectric properties of one-dimensional material networks by electric double layer techniques using ionic liquids. Nano Lett 14(6437)

    Google Scholar 

  20. Hicks L, Dresselhaus M (1993) Effect of quantum well structures on the thermoelectric figure of merit. Phys Rev B 47:12727

    Article  CAS  Google Scholar 

  21. Hicks L, Dresselhaus M (1993) Thermoelectric figure of merit of a one-dimensional conductor. Phys Rev B 47:16631

    Article  CAS  Google Scholar 

  22. Nakai Y, Honda K, Yanagi K, Kataura H, Kato T, Yamamoto T, Maniwa Y (2014) Giant seebeck coefficient in semiconducting single wall carbon nanotube film. Appl Phys Express 7:025103

    Article  Google Scholar 

  23. Scherrer H, Scherrer S (2006) In: Rowe D (ed) Thermoelectric handbook: macro to nano. CRC Press, New York

    Google Scholar 

  24. Cutler M, Mott N (1969) Observation of Anderson localization in an electron gas. Phys Rev 181:1336

    Article  CAS  Google Scholar 

  25. Yanagi K, Moriya R, Cuong T, Otani M, Okada S (2013) Charge manipulation in molecules encapsulated inside single-wall carbon nanotubes. Phys Rev Lett 110:86801

    Article  Google Scholar 

  26. Kalbac M, Kavan L, Gorantla S, Gemming T, Dunsch L (2010) Sexithiophene encapsulated in a single-walled carbon nanotube: an in situ Raman spectroelectrochemical study of a peapod structure. Chem Eur J 16:11753

    Article  CAS  Google Scholar 

  27. Kalbac M, Kavan L, Zukalova M, Dunsch L (2007) Influence of an extended fullerene cage: study of chemical and electrochemical doping of C70 peapods by in situ Raman spectroelectrochemistry. J Phys Chem C 111:1079

    Article  CAS  Google Scholar 

  28. Kavan L, Dunshc L, Katura H (2002) In situ Vis-NIR and Raman spectroelectrochemistry at fullerene peapods. Chem Phys Lett 361:79

    Article  CAS  Google Scholar 

  29. Yanagi K, Miyata Y, Kataura H (2006) Highly stabilized β-carotene in carbon nanotubes. Adv Mater 18:437

    Article  CAS  Google Scholar 

  30. Yanagi K, Iakoubovskii K, Kazaoui N, Minami N, Maniwa Y, Miyata Y, Kataura H (2006) Light-harvesting function of β-carotene inside carbon nanotubes. Phys Rev B 74:155420

    Article  Google Scholar 

  31. Liu Z, Yanagi K, Suenaga K, Kataura H, Iijima S (2007) Imaging the dynamic behaviour of individual retinal chromophores confined inside carbon nanotubes. Nat Nanotechnol 2(422)

    Google Scholar 

  32. Jeevarajan J, Wei C, Jeevarajan A, Kispert L (1996) Optical absorption spectra of dications of carotenoids. J Phys Chem 100:5637

    Article  CAS  Google Scholar 

  33. Kavan L, Dunsch L, Kataura H, Oshiyama A, Otani M, Okada S (2003) Electrochemical tuning of electronic structure of C60 and C70 fullerene peapods: in situ visible near-infrared and Raman study. J Phys Chem B 107:7666

    Article  CAS  Google Scholar 

  34. Kawai H, Hasegawa K, Oyane A, Naitoh Y, Yanagi K (2014) Self-formation of highly aligned metallic, semiconducting and single chiral single-walled carbon nanotubes assemblies via a crystal template method. Appl Phys Lett 105:093102

    Article  Google Scholar 

  35. Yanagi K, Udoguchi H, Sagitani S, Oshima Y, Takenobu T, Katura H, Ishida T, Matsuda K, Maniwa Y (2010) Transport mechanisms in high-purity metallic and semiconducting single-wall carbon nanotube networks. ACS Nano 4:4027

    Article  CAS  Google Scholar 

  36. Kratschmer W, Lamb L, Fostiropoulos K, Huffman D (1990) Solid C60: a new form of carbon. Nature 347(354)

    Google Scholar 

  37. Li X, Zhang L, Wang X, Shimoyama I, Sun X, Seo W, Dai H (2007) Langmuir-Blodgett assembly of densely aligned single-walled carbon nanotubes from bulk materials. J Am Chem Soc 129:4890

    Article  CAS  Google Scholar 

  38. Cao Q, Han S, Tulevski G, Zhu Y, Lu D, Haensch W (2013) Arrays of single-walled carbon nanotubes with full surface coverage for high-performance electronics. Nat Nanotechnol 8:180

    Article  CAS  Google Scholar 

  39. Park H, Afzali A, Han S, Tulevski G, Franklin A, Tersoff J, Hannon J, Haensch W (2012) High-density integration of carbon nanotubes via chemical self-assembly. Nat Nanotechnol 7:787

    Article  CAS  Google Scholar 

  40. Engel M, Small J, Steiner M, Freitag M, Green A, Hersam M, Avouris P (2008) Thin film nanotube transistors based on self-assembled, aligned, semiconducting carbon nanotube arrays. ACS Nano 2:2445

    Article  CAS  Google Scholar 

  41. Kawai H, Hasegawa K, Nakatsu T, Naitoh Y, Takagi Y, Wada Y, Takenobu T, Yanagi K (2013) String like assembly of aligned single-wall carbon nanotubes in a single-chiral state. Appl Phys Express 6:065103

    Article  Google Scholar 

  42. Ueno K, Nakamura S, Shimotani H, Ohtomo A, Kimura N, Nojima T, Aoki H, Iwasa Y, Kawasaki M (2008) Electric-field induced superconductivity in an insulator. Nat Mater 7:855

    Article  CAS  Google Scholar 

  43. Shimamura K, Chiba D, Ono S, Fukami S, Ishiwata N, Kawaguchi M, Kobayashi K, Ono T (2012) Electrical control of Curie temperature in cobalt using an ionic liquid film. Appl Phys Lett 100:122402

    Article  Google Scholar 

  44. Nakano M, Shibuya K, Okuyama D, Hatano T, Ono S, Kawasaki M, Iwasa Y, Tokura Y (2012) Collective bulk carrier delocalization driven by electrostatic surface charge accumulation. Nature 487(459)

    Google Scholar 

  45. Ueno K, Shimotani H, Yuan H, Ye J, Kawasaki M, Iwasa Y (2014) Field induced superconductivity in electric double layer transistors. J Phys Soc Jpn 83:032001

    Article  Google Scholar 

Download references

Acknowledgment

KY would like to thank my students, H. Kawai, K. Hasegawa, Y. Oshima, Y. Kitamura, R. Moriya, and T. Igarashi, and to thank my collaborators, Profs. Y. Maniwa, Y. Nakai, T. Okada, T. Takenobu, T. Yamamoto, and R. Nakatsu and Drs. Y. Naitou and T. Cuong.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuhiro Yanagi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Yanagi, K. (2015). Tuning Physical Properties and Structures of π-Electron System Formed by Single-Wall Carbon Nanotubes with Selected Chiralities. In: Akasaka, T., Osuka, A., Fukuzumi, S., Kandori, H., Aso, Y. (eds) Chemical Science of π-Electron Systems. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55357-1_10

Download citation

Publish with us

Policies and ethics