Skip to main content

Quantum Simulation of Spin Chains Coupled to Bosonic Modes with Superconducting Circuits

  • Conference paper
  • First Online:
Applications + Practical Conceptualization + Mathematics = fruitful Innovation

Part of the book series: Mathematics for Industry ((MFI,volume 11))

  • 1223 Accesses

Abstract

We propose the implementation of a digital quantum simulation of spin chains coupled to bosonic field modes in superconducting circuits . Gates with high fidelities allow one to simulate a variety of Ising magnetic pairing interactions with transverse field, Tavis-Cummings interaction between spins and a bosonic mode, and a spin model with three-body terms. We analyze the feasibility of the implementation in realistic circuit quantum electrodynamics setups, where the interactions are either realized via capacitive couplings or mediated by microwave resonators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Babbush R., Love, P. J., Aspuru-Guzik, A., Adiabatic Quantum Simulation of Quantum Chemistry, Sci. Rep. 4, 6603 (2014)

    Google Scholar 

  2. Ballester, D., Romero, G., García-Ripoll, J.J., Deppe, F., Solano, E.: Quantum simulation of the ultrastrong-coupling dynamics in circuit quantum electrodynamics. Phys. Rev. X 2, 021007 (2012)

    Google Scholar 

  3. Barends, R., et al.: Superconducting quantum circuits at the surface code threshold for fault tolerance. Nature 508, 500 (2014)

    Article  Google Scholar 

  4. Barends, R., et al., Digital quantum simulation of fermionic models with a superconducting circuit, Nature Commun. 6, 7654 (2015)

    Google Scholar 

  5. Bloch, I., Dalibard, J., Nascimbene, S.: Quantum simulations with ultracold quantum gases. Nat. Phys. 8, 267 (2012)

    Article  Google Scholar 

  6. Casanova, J., Mezzacapo, A., Lamata, L., Solano, E.: Quantum simulation of interacting fermion lattice models in trapped ions. Phys. Rev. Lett. 108, 190502 (2012)

    Article  Google Scholar 

  7. Casanova, J., Romero, G., Lizuain, I., García-Ripoll, J.J., Solano, E.: Deep strong coupling regime of the Jaynes-Cummings model. Phys. Rev. Lett. 105, 263603 (2010)

    Article  Google Scholar 

  8. Chiesa, A., Santini, P., Gerace, D., Raftery, J., Houck, A. A., Carretta, S., Digital quantum simulators in a scalable architecture of hybrid spin-photon qubits, arXiv:1504.05667 (2015)

  9. Devoret, M.H., Schoelkopf, R.J.: Superconducting circuits for quantum information: an outlook. Science 339, 1169 (2013)

    Article  MathSciNet  Google Scholar 

  10. Feynman, R.P.: Simulating physics with computers. Int. J. Theor. Phys. 21, 467 (1982)

    Article  MathSciNet  Google Scholar 

  11. García-Álvarez, L., Casanova, J., Mezzacapo, A., Egusquiza, I.L., Lamata, L., Romero, G., Solano, E.: Fermion-Fermion scattering in quantum field theory with superconducting circuits. Phys. Rev. Lett. 114, 070502 (2015)

    Article  Google Scholar 

  12. Geller, M. R., Martinis, J. M., Sornborger, A. T., Stancil, P. C., Pritchett, E. J., Galiautdinov, A., Universal quantum simulation with pre-threshold superconducting qubits: Single-excitation subspace method, arXiv:1210.5260 (2012)

  13. Georgescu, I.M., Ashhab, S., Nori, F.: Quantum simulation. Rev. Mod. Phys. 86, 153 (2014)

    Article  Google Scholar 

  14. Koch, J., Houck, A.A., Hur, K.L., Girvin, S.M.: Time-reversal-symmetry breaking in circuit-QED-based photon lattices. Phys. Rev. A 82, 043811 (2010)

    Article  Google Scholar 

  15. Lanyon, B.P., Hempel, C., Nigg, D., Müller, M., Gerritsma, R., Zähringer, F., Schindler, P., Barreiro, J.T., Rambach, M., Kirchmair, G., Hennrich, M., Zoller, P., Blatt, R., Roos, C.F.: Universal digital quantum simulation with trapped ions. Science 334, 57 (2011)

    Article  Google Scholar 

  16. Lanyon, B.P., Whitfield, J.D., Gillet, G.G., Goggin, M.E., Almeida, M.P., Kassal, I., Biamonte, J.D., Mohseni, M., Powell, B.J., Barbieri, M., Aspuru-Guzik, A., White, A.G.: Towards quantum chemistry on a quantum computer. Nat. Chem. 2, 106 (2009)

    Article  Google Scholar 

  17. Las Heras, U., García-Álvarez, L., Mezzacapo, A., Solano, E., Lamata, L.: Fermionic models with superconducting circuits. EPJ Quant. Technol. 2, 8 (2015)

    Google Scholar 

  18. Las Heras, U., Mezzacapo, A., Lamata, A., Filipp, S., Wallraff, A., Solano, E.: Digital quantum simulation of spin systems in superconducting circuits. Phys. Rev. Lett. 112, 200–501 (2014)

    Google Scholar 

  19. Lewenstein, M., Sanpera, A., Ahufinger, V.: Ultracold Atoms in Optical Lattices. Oxford University Press, USA (2012)

    Book  MATH  Google Scholar 

  20. Lloyd, S.: Universal quantum simulators. Science 273, 1073 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mei, F., Stojanovic, V. M., Siddiqi, I., Tian, L., Analog superconducting quantum simulator for Holstein polarons, Phys. Rev. B 88, 224502 (2013)

    Google Scholar 

  22. Mezzacapo, A., Casanova, J., Lamata, L., Solano, E.: Digital quantum simulation of the Holstein model in trapped ions. Phys. Rev. Lett. 109, 200501 (2012)

    Article  Google Scholar 

  23. Mezzacapo, A., Lamata, L., Filipp, S., Solano, E.: Many-body interactions with tunable-coupling transmon qubits. Phys. Rev. Lett. 113, 050501 (2014)

    Article  Google Scholar 

  24. Mezzacapo, A., Las Heras, U., Pedernales, J.S., DiCarlo, L., Solano, E., Lamata, L.: Digital quantum Rabi and Dicke models in superconducting circuits. Sci. Rep. 4, 7482 (2014)

    Google Scholar 

  25. Mostame, S., et al., Towards Outperforming Classical Algorithms with Analog Quantum Simulators, arXiv:1502.00962 (2015)

  26. Niemczyk, T., Deppe, F., Huebl, H., Menzel, E.P., Hocke, F., Schwarz, M.J., García-Ripoll, J.J., Zueco, D., Hümmer, T., Solano, E., Marx, A., Gross, R.: Circuit quantum electrodynamics in the ultrastrong-coupling regime. Nat. Phys. 6, 772 (2010)

    Article  Google Scholar 

  27. Pedernales, J.S., Di Candia, R., Ballester, D., Solano, E.: Quantum simulations of relativistic quantum physics in circuit QED. New. J. Phys. 15, 055008 (2013)

    Article  MathSciNet  Google Scholar 

  28. Poulin, D., Hastings, M. B., Wecker, D., Wiebe, N., Doherty, A. C., Troyer, M., The Trotter Step Size Required for Accurate Quantum Simulation of Quantum Chemistry, arXiv:1406.4920 (2014)

  29. Rabi, I.I.: On the process of space quantization. Phys. Rev. 49, 324 (1936)

    Article  MATH  Google Scholar 

  30. Rotondo, P., Cosentino Lagomarsino, M., Viola, G.: Dicke simulators with emergent collective quantum computational abilities, Phys. Rev. Lett. 114, 143601 (2015)

    Google Scholar 

  31. Salathé. Y., et al., Digital Quantum Simulation of Spin Models with Circuit Quantum Electrodynamics, Phys. Rev. X 5, 021027 (2015)

    Google Scholar 

  32. Seo, K., Tian, L., Quantum phase transition in a multi-connected superconducting Jaynes-Cummings lattice, Phys. Rev. B 91, 195439 (2015)

    Google Scholar 

  33. Suzuki, M.: Fractal decomposition of exponential operators with applications to many-body theories and Monte Carlo simulations. Phys. Lett. A 146, 319 (1990)

    Article  MathSciNet  Google Scholar 

  34. Tavis, M., Cummings, F.W.: Exact solution for an N-moleculeradiation-field Hamiltonian. Phys. Rev. 170, 379 (1968)

    Article  Google Scholar 

  35. van Oudenaarden, A., Mooij, J.E.: One-dimensional mott insulator formed by quantum vortices in Josephson junction arrays. Phys. Rev. Lett. 76, 4947 (1996)

    Article  Google Scholar 

  36. Viehmann, O., von Delft, J., Marquardt, F.: Observing the nonequilibrium dynamics of the quantum transverse-field Ising chain in circuit QED. Phys. Rev. Lett. 110, 030601 (2013)

    Article  Google Scholar 

  37. Wallraff, A., Schuster, D.I., Blais, A., Frunzio, L., Huang, R.-S., Majer, J., Kumar, S., Girvin, S.M., Schoelkopf, R.J.: Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431, 162 (2004)

    Article  Google Scholar 

  38. You, J.Q., Shi, X.-F., Hu, X., Nori, F.: Quantum emulation of a spin system with topologically protected ground states using superconducting quantum circuits. Phys. Rev. B 81, 014505 (2010)

    Article  Google Scholar 

  39. Yung, M.-H., Casanova, J., Mezzacapo, A., McClean, J., Lamata, L., Aspuru-Guzik, A., Solano, E.: From transistor to trapped-ion computers for quantum chemistry. Sci. Rep. 4, 3589 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to U. Las Heras or L. Lamata .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this paper

Cite this paper

Heras, U.L., García-Álvarez, L., Mezzacapo, A., Solano, E., Lamata, L. (2016). Quantum Simulation of Spin Chains Coupled to Bosonic Modes with Superconducting Circuits. In: Anderssen, R., et al. Applications + Practical Conceptualization + Mathematics = fruitful Innovation. Mathematics for Industry, vol 11. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55342-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55342-7_8

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55341-0

  • Online ISBN: 978-4-431-55342-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics