Skip to main content

An Overview of Recent Advances in Monte-Carlo Methods for Bayesian Filtering in High-Dimensional Spaces

  • Chapter
  • First Online:
Theoretical Aspects of Spatial-Temporal Modeling

Part of the book series: SpringerBriefs in Statistics ((JSSRES))

Abstract

Nonlinear non-Gaussian state-space models arise in numerous applications in statistics and signal processing. In this context, one of the most successful and popular approximation techniques is the sequential Monte-Carlo (SMC) algorithm, also known as the particle filter. Nevertheless, this method tends to be inefficient when applied to high-dimensional problems. In this chapter, we present, an overview of recent contributions related to Monte-Carlo methods for sequential simulation from ultra high-dimensional distributions, often arising for instance in Bayesian applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson, T.W.: The Statistical Analysis of Time Series, vol. 19. Wiley, New York (2011)

    Google Scholar 

  2. Berzuini, C., Best, N.G., Gilks, W.R., Larizza, C.: Dynamic conditional independence models and Markov chain Monte Carlo methods. J. Am. Stat. Assoc. 92(440), 1403–1412 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Beskos, A., Crisan, D., Jasra, A., Kamatani, K., Zhou, Y.: A Stable Particle Filter in High-Dimensions (2014). arXiv.org

  4. Bickel, P., Li, B., Bengtsson, T.: Sharp failure rates for the bootstrap particle filter in high dimensions. Insti. Math. Stat. Collect. 3, 318–329 (2008)

    Article  MathSciNet  Google Scholar 

  5. Brockwell, A., Del Moral, P., Doucet, A.: Sequentially interacting Markov chain Monte Carlo methods. Ann. Statist. 38(6), 3387–3411 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cappé, O., Godsill, S., Moulines, E.: An overview of existing methods and recent advances in sequential Monte Carlo. Proc. IEEE 95(5), 899–924 (2007)

    Article  Google Scholar 

  7. Cappe, O., Moulines, E., Ryden, T.: Inference in Hidden Markov Models (2005)

    Google Scholar 

  8. Chopin, N.: Central limit theorem for sequential Monte Carlo methods and its application to Bayesian inference. Ann. Stat. 2385–2411 (2004)

    Google Scholar 

  9. Crisan, D., Doucet, A.: A survey of convergence results on particle filtering methods for practitioners. IEEE Trans. Sig. Process. 50(3), 736–746 (2002)

    Article  MathSciNet  Google Scholar 

  10. Del Moral, P.: Feynman-Kac Formulae: Genealogical and Interacting Particle Systems with Applications. Springer, New York (2004)

    Google Scholar 

  11. Del Moral, P., Doucet, A., Jasra, A.: Sequential Monte Carlo samplers. J. Roy. Stat. Soc. Ser. B (Stat. Methodol.) 68(3), 411–436 (2006)

    Google Scholar 

  12. Deutscher, J., Blake, A., Reid, I.: Articulated body motion capture by annealed particle filtering. IEEE Conf. Comput. Vis. Patt. Recogn. 2000, 126–133 (2000)

    Google Scholar 

  13. Djuric, P., Bugallo, M.F.: Particle filtering for high-dimensional systems. In: IEEE 5th International Workshop on Computational Avances in Multi-Sensor Adaptive Processing Adaptive Processing (CAMSAP), pp. 352–355 (2013)

    Google Scholar 

  14. Djuric, P., Lu, T., Bugallo, M.F.: Multiple particle filtering. In: IEEE International Conference on Acoustics, Speech and Signal Processing, 2007, ICASSP (2007)

    Google Scholar 

  15. Doucet, A., De Freitas, N., Gordon, N. (eds.).: Sequential Monte Carlo Methods in Practice. Springer, New York (2001)

    Google Scholar 

  16. Doucet, A., Godsill, S., Andrieu, C.: On sequential Monte-Carlo sampling methods for Bayesian filtering. Stat. Comput. 10, 197–208 (2000)

    Article  Google Scholar 

  17. Gall, J., Potthoff, J., Schnörr, C., Rosenhahn, B., Seidel, H.P.: Interacting and annealing particle filters: mathematics and a recipe for applications. J. Math. Imaging Vis. 28(1), 1–18 (2014)

    Article  MathSciNet  Google Scholar 

  18. Geweke, J., et al.: Evaluating the Accuracy of Sampling-based Approaches to the Calculation of Posterior Moments, vol. 196. Federal Reserve Bank of Minneapolis, Research Department (1991)

    Google Scholar 

  19. Geyer, C.J.: Markov chain Monte Carlo maximum likelihood. In: Computing Science and Statistics: Proceedings of the 23rd Symposium on the Interface, pp. 156–163 (1991)

    Google Scholar 

  20. Gilks, W.R., Berzuini, C.: Following a moving target-Monte Carlo inference for dynamic Bayesian models. J. Roy. Stat. Soc. Ser. B (Stat. Methodol.) 63, 127–146 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  21. Godsill, S.J., Clapp, T.: Improvement strategies for Monte Carlo particle filters. In: Doucet, A., De Freitas, N., Gordon, N. (eds.) Sequential Monte Carlo Methods in Practice. Springer, Berlin(2001)

    Google Scholar 

  22. Golightly, A., Wilkinson, D.: Bayesian sequential inference for nonlinear multivariate diffusions. Stat. Comput. 16(4), 323–338 (2006)

    Article  MathSciNet  Google Scholar 

  23. Gordon, N., Salmond, D., Smith, A.F.: Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE Proc. F. Radar. Sig. Process. 140, 107–113 (1993)

    Google Scholar 

  24. Jones, G.L., et al.: On the Markov chain central limit theorem. Probab. Surv. 1, 299–320 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  25. Julier, S.J., Uhlmann, J.K.: Unscented filtering and nonlinear estimation. In: Proceedings of the IEEE, pp. 401–422 (2004)

    Google Scholar 

  26. Kalman, R.E.: A new approach to linear filtering and prediction problems. Trans. ASME J. Basic Eng. 82, 35–45 (1960)

    Article  Google Scholar 

  27. Khan, Z., Balch, T., Dellaert, F.: MCMC-Based particle filtering for tracking a variable number of interacting targets. IEEE Trans. Pattern Anal. Mach. Intell. 27(11), 1805–1819 (2005)

    Article  Google Scholar 

  28. Kong, A., Liu, J.S., Wong, W.H.: Sequential imputations and bayesian missing data problems. J. Am. Stat. Assoc. 89(425), 278–288 (1994)

    Article  MATH  Google Scholar 

  29. Künsch, H.R.: Recursive Monte Carlo filters: algorithms and theoretical analysis. Ann. Stat. 1983–2021 (2005)

    Google Scholar 

  30. Leith, C.: The standard error of time-average estimates of climatic means. J. Appl. Meteorol. 12(6), 1066–1069 (1973)

    Article  Google Scholar 

  31. Liang, F., Wong, W.H.: Evolutionary monte carlo: applications to \(C_p\) Model sampling and change point problem. Stat. Sinica 10, 317–342 (2000)

    MATH  Google Scholar 

  32. Mihaylova, L., Hegyi, A., Gning, A., Boel, R.K.: Parallelized particle and gaussian sum particle filters for large-scale freeway traffic systems. IEEE Trans. Intell. Transp. Syst. 13(1), 36–48 (2012)

    Article  Google Scholar 

  33. Neal, R.: Annealed importance sampling. Stat. Comput. 125–139 (2001)

    Google Scholar 

  34. Peters, G.W.: Topics in Sequential Monte Carlo Samplers. Master’s thesis, University of Cambridge (2005)

    Google Scholar 

  35. Rebeschini, P.: Nonlinear Filtering in High Dimension. Ph.D. thesis, Princeton University (2014)

    Google Scholar 

  36. Rebeschini, P., van Handel, R.: Can Local Particle Filters Beat the Curse of Dimensionality? arXiv.org (2013)

  37. Ristic, B., Arulampalam, S., Gordon, N.: Beyond the Kalman filter: particle filters for tracking applications. Artech House (2004)

    Google Scholar 

  38. Robert, C.P., Casella, G.: Monte Carlo Statistical Methods. Springer, Berlin (2004)

    Google Scholar 

  39. Septier, F., Carmi, A., Pang, S., Godsill, S.: Multiple object tracking using evolutionary and hybrid MCMC-based particle algorithms. In: 15th IFAC Symposium on System Identification, (SYSID 2009). Saint Malo, France (2009)

    Google Scholar 

  40. Septier, F., Pang, S., Carmi, A., Godsill, S.: On MCMC-Based particle methods for bayesian filtering : application to multitarget tracking. In: International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP 2009). Aruba, Dutch Antilles (2009)

    Google Scholar 

  41. Snyder, C.: Particle filters, the“optimal” proposal and high-dimensional systems. In: ECMWF Seminar on Data Assimilation for Atmosphere and Ocean, pp. 1–10 (2011)

    Google Scholar 

  42. Snyder, C., Bengtsson, T., Bickel, P., Anderson, J.: Obstacles to high-dimensional particle filtering. Monthly Weather Rev., Spec. Collect.: Math. Adv. Data Assimilation 136(12), 4629–4640 (2008)

    Article  Google Scholar 

  43. Vergé, C., Dubarry, C., Del Moral, P., Moulines, E.: On Parallel Implementation of Sequential Monte Carlo Methods: The Island Particle Model. arXiv.org (2013)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Septier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Septier, F., Peters, G.W. (2015). An Overview of Recent Advances in Monte-Carlo Methods for Bayesian Filtering in High-Dimensional Spaces. In: Peters, G., Matsui, T. (eds) Theoretical Aspects of Spatial-Temporal Modeling. SpringerBriefs in Statistics(). Springer, Tokyo. https://doi.org/10.1007/978-4-431-55336-6_2

Download citation

Publish with us

Policies and ethics