Skip to main content

Functional Roles of β2-Adrenergic Receptors in Skeletal Muscle Hypertrophy and Atrophy

  • Chapter
  • 3608 Accesses

Abstract

We discuss the functional roles of β2-adrenergic receptors in skeletal muscle hypertrophy and atrophy, as well as the adaptive responses of β2-adrenergic receptor expression to anabolic and catabolic conditions. Stimulation of the β2-adrenergic receptor using anabolic drugs increases muscle mass by promoting muscle protein synthesis and/or attenuating protein degradation. These effects are prevented by the downregulation of the receptor. Endurance training improves oxidative performance, partly by increasing β2-adrenergic receptor density in exercise-recruited slow-twitch muscles. However, excessive stimulation of β2-adrenergic receptors negates their beneficial effects. Although preventive effects of β2-adrenergic receptor stimulation on atrophy induced by muscle disuse and catabolic hormones or drugs were observed, these catabolic conditions decreased β2-adrenergic receptor expression in slow-twitch muscles. These findings present evidence against the use of β2-adrenergic agonists in therapy for muscle wasting and weakness. Thus, β2-adrenergic receptors in the skeletal muscles play an important physiological role in the regulation of protein and energy balance.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abramson SN, Martin MW, Hughes AR, Harden TK, Neve KA, Barrett DA, Molinoff PB (1988) Interaction of β-adrenergic receptors with the inhibitory guanine nucleotide-binding protein of adenylate cyclase in membranes prepared from cyc-S49 lymphoma cells. Biochem Pharmacol 37:4289–4297

    Article  CAS  PubMed  Google Scholar 

  • Akama T, Abe A (2013) Development and activities of the fight against doping. J Phys Fit Sports Med 2:267–274. doi:10.7600/jpfsm.2.267

    Article  Google Scholar 

  • Akimoto T, Pohnert SC, Li P, Zhang M, Gumbs C, Rosenberg PB, Williams RS, Yan Z (2005) Exercise stimulates Pgc-1α transctiption in skeletal muscle through activation of the p38 MAPK pathway. J Biol Chem 280:19587–19593. doi:10.1074/jbc.M408862200

    Article  CAS  PubMed  Google Scholar 

  • Baar K, Esser K (1999) Phosphorylation of p70(S6K) correlates with increased skeletal muscle mass following resistance exercise. Am J Physiol Cell Physiol 276:C120–C127

    CAS  Google Scholar 

  • Barbier J, Rannou-Bekono F, Marchais J, Berthon PM, Delamarche P, Carré F (2004) Effects of training on β1 β2 β3 adrenergic and M2 muscarinic receptors in rat heart. Med Sci Sports Exerc 36:949–954

    Article  CAS  PubMed  Google Scholar 

  • Beitzel F, Gregorevic P, Ryall JG, Plant DR, Sillence MN, Lynch GS (2004) β-Adrenoceptor agonist feneterol enhances functional repair of regenerating rat skeletal muscle after injury. J Appl Physiol 96:1385–1392. doi:10.1152/japplphysiol.01081.2003

    Article  CAS  PubMed  Google Scholar 

  • Beitzel F, Sillence MN, Lynch GS (2007) β-Adrenoceptor signaling in regenerating skeletal muscle after β-agonist administration. Am J Physiol Endocrinol Metab 293:E932–E940. doi:10.1152/ajpendo.00175.2007

    Article  CAS  PubMed  Google Scholar 

  • Bengstsson T, Cannon B, Nedergaad J (2000) Differential adrenergic regulation of the gene expression of the β-adrenoceptor subtype β1, β2 and β3 in brown adipocyte. Biochem J 347:643–651

    Article  Google Scholar 

  • Blaxall BC, Pellett AC, Wu SC, Pende A, Port JD (2000) Purification and characterization of β-adrenergic receptor mRNA-binding proteins. J Biol Chem 274:4290–4297. doi:10.1074/jbc.275.6.4290

    Article  Google Scholar 

  • Buckenmeyer PJ, Goldfarb AH, Partilla JS, Piñeyro MA, Dax EM (1990) Endurance training, not acute exercise, differentially alters β-receptors and cyclase in skeletal fiber types. Am J Physiol Endocrinol Metab 258:E71–E77

    CAS  Google Scholar 

  • Clarkson PM, Thompson HS (1997) Drugs and sport: research findings and limitations. Sports Med 24:366–384

    Article  CAS  PubMed  Google Scholar 

  • Collins S, Altschmied J, Herbsman O, Caron MG, Mellon PL, Lefkowitz RJ (1990) A cAMP response element in the β2-adrenergic receptor gene confers transcriptional autoregulation by cAMP. J Biol Chem 265:19330–19335

    CAS  PubMed  Google Scholar 

  • Communal C, Colucci WS, Singh K (2000) p38 mitogen-activated protein kinase pathway protects adult rat ventricular myocytes against β-adrenergic receptor-stimulated apoptosis. Evidence for Gi-dependent activation. J Biol Chem 275:19395–19400. doi:10.1074/jbc.M910471199

    Article  CAS  PubMed  Google Scholar 

  • Cornett LE, Hiller FC, Jacobi SE, Cao W, McGraw DW (1998) Identification of a glucocorticoid response element in the rat β2-adrenergic receptor gene. Mol Pharmacol 54:1016–1023. doi:10.1124/mol.54.6.1016

    CAS  PubMed  Google Scholar 

  • DeWire SM, Ahn S, Lefkowitz RJ, Shenoy SK (2007) β-Arrestins and cell signaling. Annu Rev Physiol 69:483–510. doi:10.1146/annurev.ph.69.013107.100021

    Article  CAS  PubMed  Google Scholar 

  • Gonçalves DA, Silveira WA, Lira EC, Graça FA, Paula-Gomes S, Zanon NM, Kettelhut IC, Navegantes LC (2012) Clenbuterol suppresses proteasomal and lysosomal proteolysis and atrophy-related genes in denervated rat soleus muscles independently of Akt. Am J Physiol Endocrinol Metab 302:E123–E133. doi:10.1152/ajpendo.00188.2011

    Article  PubMed  Google Scholar 

  • Gosmanov AR, Wong JA, Thomason DB (2002) Duality of G protein-coupled mechanisms for β-adrenergic activation of NKCC activity in skeletal muscle. Am J Physiol Cell Physiol 283:C1025–C1032. doi:10.1152/ajpcell.00096.2002

    Article  CAS  PubMed  Google Scholar 

  • Hadcock JR, Malbon CC (1998) Regulation of β-adrenergic receptors by “permissive” hormones: glucocorticoids increase steady-state levels of receptor mRNA. Proc Natl Acad Sci U S A 85:8415–8419

    Article  Google Scholar 

  • Handschin C, Rhee J, Lin J, Tarr PT, Spiegelman BM (2003) An autoregulatory loop controls peroxisome proliferator-activated receptor γ coactivatior 1α expression in muscle. Proc Natl Acad Sci U S A 100:7111–7116. doi:10.1073/pnas.1232352100

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hinkle RT, Hodge KM, Cody DB, Sheldon RJ, Kobilka BK, Isfort RJ (2002) Skeletal muscle hypertrophy and anti-atrophy effects of clenbuterol are mediated by the β2-adrenergic receptor. Muscle Nerve 25:729–734. doi:10.1002/mus.10092

    Article  CAS  PubMed  Google Scholar 

  • Huang H, Gazzola C, Pegg GG, Sillence MN (2000) Differential effects of dexamethasone and clenbuterol on rat growth and on β2-adrenoceptors in lung and skeletal muscle. J Anim Sci 78:604–608

    CAS  PubMed  Google Scholar 

  • Ishii N, Ogasawara R, Kobayashi K, Nakazato K (2012) Roles played by protein metabolism and myogenic progenitor cells in exercise-induced muscle hypertrophy and their relation to resistance training regimens. J Phys Fit Sports Med 2:83–94. doi:10.7600/jpfsm.1.83

    Article  Google Scholar 

  • Johnson M (2006) Molecular mechanisms of β2-adrenergic receptor function, response, regulation. J Allergy Clin Immunol 117:18–24. doi:10.1016/j.jaci.2005.11.012

    Article  CAS  PubMed  Google Scholar 

  • Jones SW, Baker DJ, Greenhaff PL (2003) G protein-coupled receptor kinases 2 and 5 are differentially expressed in rat skeletal muscle and remain unchanged following β2-agonist administration. Exp Physiol 88:277–284

    Article  CAS  PubMed  Google Scholar 

  • Kawano F, Tanihata J, Sato S, Nomura S, Shiraishi A, Tachiyashiki K, Imaizumi K (2009) Effects of dexamethasone on the expression of β1-, β2- and β3-adrenoceptor mRNAs in skeletal and left ventricle muscles in rats. J Physiol Sci 59:383–390. doi:10.1007/s12576-009-0046-6

    Article  CAS  PubMed  Google Scholar 

  • Kawasaki E, Hokari F, Sasaki M, Sakai A, Koshinaka K, Kawanaka K (2011) The effects of β-adrenergic stimulation and exercise on NR4A3 protein expression in rat skeletal muscle. J Physiol Sci 61:1–11. doi:10.1007/s12576-010-0114-y

    Article  CAS  PubMed  Google Scholar 

  • Kim YS, Sainz RD, Molenaar P, Summers RJ (1991) Characterization of β1- and β2-adrenoceptors in rat skeletal muscles. Biochem Pharmacol 42:1783–1789. doi:10.1016/0006-2952(91)90516-8

    Article  CAS  PubMed  Google Scholar 

  • Kitaura T, Tsunekawa N, Hatta H (2001) Decreased monocarboxylate transporter 1 in rat soleus and EDL muscles exposed to clenbuterol. J Appl Physiol 91:85–90

    CAS  PubMed  Google Scholar 

  • Kizaki T, Takemasa T, Sakurai T, Izawa T, Hanawa T, Kamiya S, Haga S, Imaizumi K, Ohno H (2008) Adaptation of macrophages to exercise training improves innate immunity. Biochem Biophys Res Commun 372:152–156. doi:10.1016/j.bbrc.2008.05.005

    Article  CAS  PubMed  Google Scholar 

  • Kline WO, Panaro FJ, Yang H, Bodine SC (2007) Rapamycin inhibits the growth and muscle-sparing effects of clenbuterol. J Appl Physiol 102:740–747. doi:10.1152/japplphysiol.00873.2006

    Article  CAS  PubMed  Google Scholar 

  • Krupnich JG, Benovic JL (1998) The role of receptor kinases and arrestins in G protein-coupled receptor regulation. Annu Rev Pharmacol Toxicol 38:289–319. doi:10.1146/annurev.pharmtox.38.1.289

    Article  Google Scholar 

  • Lynch GS, Ryall JG (2008) Role of β-adrenoceptor signaling in skeletal muscles: implications for muscle wasting and disease. Physiol Rev 88:729–767. doi:10.1152/physrev.00028.2007

    Article  CAS  PubMed  Google Scholar 

  • Lynch GS, Hayes A, Campbell SP, Williams DA (1996) Effects of β2-agonist administration and exercise on contractile activation of skeletal muscle fibers. J Appl Physiol 81:1610–1618

    CAS  PubMed  Google Scholar 

  • McCormick C, Alexandre L, Thompson J, Mutungi G (2010) Clenbuterol and formoterol decrease force production in isolated intact mouse skeletal muscle fiber bundles through a β2-adrenoceptor- independent mechanism. J Appl Physiol 109:1716–1727. doi:10.1152/japplphysiol.00592.2010

  • Miura S, Kawanaka K, Kai Y, Tamura M, Goto M, Shiuchi T, Minokoshi Y, Ezaki O (2007) An increase in murine skeletal muscle peroxisome proliferator-activated receptor-γ coactivatior-1α (PGC-1α) mRNA in response to exercise is mediated by β-adrenergic receptor activation. Endocrinology 148:3441–3448. doi:10.1210/en.2006-1646

    Article  CAS  PubMed  Google Scholar 

  • Mounier R, Cavalié H, Lac G, Clottes E (2007) Molecular impact of clenbuterol and isometric strength training on rat EDL muscles. Pflugers Arch 453:497–507. doi:10.1007/s00424-006-0122-1

    Article  CAS  PubMed  Google Scholar 

  • Nieto JL, Diaz-Laviada I, Malpartida JM, Galve-Roperh I, Haro A (1997) Adaptations of the β-adrenoceptor-adenylyl cyclase system in rat skeletal muscle to endurance physical training. Pflugers Arch 434:809–814

    Google Scholar 

  • Ogasawara J, Sanpei M, Rahman N, Sakurai T, Kizaki T, Hitomi Y, Ohno H, Izawa T (2006) β-Adrenergic receptor trafficking by exercise in rat adipocytes: roles of G-protein-coupled receptor kinase-2, β-arrestin-2, and the ubiquitin-proteasome pathway. FASEB J 20:350–352. doi:10.1096/fj.05-4688fje

    CAS  PubMed  Google Scholar 

  • Pearen MA, Myers SA, Raichur S, Ryall JG, Lynch GS, Muscat GE (2008) The orphan nuclear receptor, NOR-1, is a target of β-adrenergic signaling, regulates gene expression that controls oxidative metabolism in skeletal muscle. Endocrinology 149:2853–2865. doi:10.1210/en.2007-1202

    Article  CAS  PubMed  Google Scholar 

  • Pellegrino MA, D’Antona G, Bortolotto S, Boschi F, Pastoris O, Bottinelli R, Polla B, Reggiani C (2004) Clenbuterol antagonizes glucocorticoid-induced atrophy and fiber type transformation in mice. Exp Physiol 89:89–100. doi:10.1113/expphysiol.2003.002609

    Article  CAS  PubMed  Google Scholar 

  • Pette D, Heilmann C (1997) Transformation of morphological, functional and metabolic properties of fast-twitch muscle as induced by long-term electrical stimulation. Basic Res Cardiol 72:247–253

    Article  Google Scholar 

  • Pierce KL, Premont RT, Lefkowitz RJ (2002) Seven-transmembrane receptors. Nat Rev Mol Cell Biol 3:639–650. doi:10.1038/nrm908

    Article  CAS  PubMed  Google Scholar 

  • Powers SK, Wade M, Criswell D, Herb RA, Dodd S, Hussain R, Martin D (1995) Role of β-adrenergic mechanisms in exercise training-induced metabolic changes in respiratory and locomotor muscle. Int J Sports Med 16:13–18. doi:10.1055/s-2007-972956

    Article  CAS  PubMed  Google Scholar 

  • Rothwell NJ, Stock MJ, Sudera DK (1987) Changes in tissue blood flow and beta-receptor density of skeletal muscle in rats treated with the β2-adrenoceptor agonist clenbuterol. Br J Pharmacol 90:601–607

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ryall JG, Plant DR, Gregorevic P, Sillence MN, Lynch GS (2006) β2-Agonist administration reverses muscle wasting and improves muscle function in aged rats. J Physiol 555:175–188. doi:10.1113/jphysiol.2003.056770

    Article  Google Scholar 

  • Sakamoto K, Aschenbach WG, Hirshman MF, Goodyear LJ (2003) Akt signaling in skeletal muscle: regulation by exercise and passive stretch. Am J Physiol Endocrinol Metab 285:E1081–E1088. doi:10.1152/ajpendo.00228.2003

    Article  CAS  PubMed  Google Scholar 

  • Sato S, Nomura S, Kawano F, Tanihata J, Tachiyashiki K, Imaizumi K (2008) Effects of the β2-agonist clenbuterol on β1- and β2-adrenoceptor mRNA expressions of rat skeletal and left ventricle muscles. J Pharmacol Sci 107:393–400. doi:10.1254/jphs.08097FP

  • Sato S, Nomura S, Kawano F, Tanihata J, Tachiyashiki K, Imaizumi K (2010) Adaptive effects of the β2-agonist clenbuterol on expression of β2-adrenoceptor mRNA in rat fast-twitch fiber-rich muscles. J Physiol Sci 60:119–127. doi:10.1007/s12576-009-0075-1

    Article  CAS  PubMed  Google Scholar 

  • Sato S, Shirato K, Tachiyashiki K, Imaizumi K (2011a) Muscle plasticity and β2-adrenergic receptors: adaptive responses of β2-adrenergic receptor expression to muscle hypertrophy and atrophy. J Biomed Biotechnol. doi:10.1155/2011/729598

  • Sato S, Shirato K, Tachiyashiki K, Imaizumi K (2011b) Synthesized glucocorticoid, dexamethasone regulates the expression of β2-adrenoceptor and glucocorticoid receptor mRNAs but not proteins in slow-twitch soleus muscle of rats. J Toxicol Sci 36:479–486. doi:10.2131/jts.36.479

    Article  CAS  PubMed  Google Scholar 

  • Sato S, Suzuki H, Tsujimoto H, Shirato K, Tachiyashiki K, Imaizumi K (2011c) Casted-immobilization downregulates glucocorticoid receptor expression in rat slow-twitch soleus muscle. Life Sci 89:962–967. doi:10.1016/j.lfs.2011.10.008

    Article  CAS  PubMed  Google Scholar 

  • Sato S, Shirato K, Kizaki T, Ohno H, Tachiyashiki K, Imaizumi K (2012) Effects of β2-agonists and exercise on β2-adrenergic receptor signaling in skeletal muscles. J Phys Fit Sports Med 1:139–144. doi:10.7600/jpfsm.1.139

    Article  Google Scholar 

  • Sato S, Shirato K, Mitsuhashi R, Inoue D, Kizaki T, Ohno H, Tachiyashiki K, Imaizumi K (2013) Intracellular β2-adrenergic receptor signaling specificity in mouse skeletal muscle in response to single-dose β2-agonist clenbuterol treatment and acute exercise. J Physiol Sci 63:211–218. doi:10.1007/s12576-013-0253-z

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shi H, Zeng C, Ricome A, Hannon KM, Grant AL, Gerrard DE (2007) Extracellular signal-regulated kinase pathway is differentially involved in β-agonist-induced hypertrophy in slow and fast muscles. Am J Physiol Cell Physiol 292:C1681–C1689. doi:10.1152/ajpcell.00466.2006

    Article  CAS  PubMed  Google Scholar 

  • Sillence MN, Matthews ML, Spiers WG, Pegg GG, Lindsay DB (1991) Effects of clenbuterol, ICI118551 and sotalol on the growth of cardiac and skeletal muscle and on β2-adrenoceptor density in female rats. Naunyn Schmiedebergs Arch Pharmacol 344:449–453

    CAS  PubMed  Google Scholar 

  • Smith IJ, Alamdari N, O’Neal P, Gonnella P, Aversa Z, Hasselgren PO (2010) Sepsis increases the expression and activity of the transcription factor Forkhead Box O 1 (FOXO1) in skeletal muscle by glucocorticoid- dependent mechanism. Int J Biochem Cell Biol 42:701–711. doi:10.1016/j.biocel.2010.01.006

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stevens L, Firinga C, Gohlsch B, Bastide B, Mounier Y, Pette D (2000) Effects of unweighting and clenbuterol on myosin light and heavy chains in fast and slow muscles of rat. Am J Physiol Cell Physiol 279:C1558–C1563

    CAS  PubMed  Google Scholar 

  • Stones R, Natali A, Billeter R, Harrison S, White E (2008) Voluntary exercise-induced changes in β2-adrenoceptor signaling in rat ventricular myocytes. Exp Physiol 93:1065–1075. doi:10.1113/expphysiol.2008.042598

    Article  PubMed Central  PubMed  Google Scholar 

  • Sun X, Fischer DR, Pritts TA, Wray CJ, Hasselgren PO (2002) Expression and binding activity of the glucocorticoid receptor are upregulated in septic muscle. Am J Physiol Regul Integr Comp Physiol 282:R509–R518. doi:10.1152/ajpregu.00509.2001

    Article  CAS  PubMed  Google Scholar 

  • Suzuki H, Tsujimoto H, Shirato K, Mitsuhashi R, Sato S, Tachiyashiki K, Imaizumi K (2014) Clenbuterol attenenuates immobilization-induced atrophy of type II fibers in the fast-twitch extensor digitorum longus but not in the slow-twitch soleus muscle. Glob J Hum Anat Physiol Res 1:10–17

    Google Scholar 

  • Teshima-Kondo S, Nikawa T (2013) Regulation of skeletal muscle atrophy. J Phys Fit Sports Med 2:457–461. doi:10.7600/jpfsm.2.457

    Article  Google Scholar 

  • Torgan CE, Brozinick JT Jr, Banks EA, Cortez MY, Wilcox RE, Ivy JL (1993) Exercise training and clenbuterol reduce insulin resistance of obese Zucker rats. Am J Physiol Endocrinol Metab 264:E373–E379

    CAS  Google Scholar 

  • Yimlamai T, Dodd SL, Borst SE, Park S (2005) Clenbuterol induces muscle-specific attenuation of atrophy through effects on the ubiquitin-proteasome pathway. J Appl Physiol 99:71–80. doi:10.1152/japplphysiol.00448.2004

    Article  CAS  PubMed  Google Scholar 

  • Zhao W, Qin W, Pan J, Wu Y, Bauman WA, Cardozo C (2009) Dependence of dexamethasone-induced Akt/FOXO1 signaling, upregulation of MAFbx, and protein catabolism upon the glucocorticoid receptor. Biochem Biophys Res Commun 378:668–672. doi:10.1016/j.bbrc.2008.11.123

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shogo Sato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Sato, S., Shirato, K., Mitsuhashi, R., Suzuki, H., Tachiyashiki, K., Imaizumi, K. (2015). Functional Roles of β2-Adrenergic Receptors in Skeletal Muscle Hypertrophy and Atrophy. In: Kanosue, K., Oshima, S., Cao, ZB., Oka, K. (eds) Physical Activity, Exercise, Sedentary Behavior and Health. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55333-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55333-5_18

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55332-8

  • Online ISBN: 978-4-431-55333-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics