Skip to main content

Role of Physical Exercise on Postprandial Blood Glucose Responses to Low-Carbohydrate/High-Fat Diet Intake

  • Chapter
Physical Activity, Exercise, Sedentary Behavior and Health
  • 3561 Accesses

Abstract

Postprandial blood glucose responses may be an effective predictor of mortality and cardiovascular diseases. Abnormal postprandial blood glucose response is associated with the development of arteriosclerosis. Therefore, postprandial blood glucose response has become an increasingly important indicator of whether individuals are leading a healthy life. Daily diet and physical exercise play important roles in optimizing postprandial blood glucose response. Consuming a low-carbohydrate/high-fat (LC/HF) diet (<40 % of its calorie as carbohydrate) for short and long periods contributes to an increase in postprandial blood glucose concentrations. In contrast, physical exercise (a single bout of physical exercise and exercise training) increases glucose uptake and insulin sensitivity, subsequently leading to improvements in postprandial blood glucose response. However, a single bout of physical exercise has less effect on abnormal postprandial blood glucose responses induced by short-term intake of a LC/HF diet. Presumably, the effects of a single bout of physical exercise may be impaired by a short-term LC/HF diet. Performing physical exercise before but not after ingesting a LC/HF diet may improve the LC/HF diet-induced attenuation of postprandial blood glucose response. Moreover, physical exercise training should improve the postprandial blood glucose response induced by a LC/HF diet. However, there is little direct evidence regarding the effects of physical training on abnormal postprandial blood glucose response induced by a LC/HF diet, and, thus, future intervention studies are required.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bachmann OP, Dahl DB, Brechtel K et al (2001) Effects of intravenous and dietary lipid challenge on intramyocellular lipid content and the relation with insulin sensitivity in humans. Diabetes 50:2579–2584

    Article  CAS  PubMed  Google Scholar 

  • Ben-Ezra V, Jankowski C, Kendrick K et al (1995) Effect of intensity and energy expenditure on postexercise insulin responses in women. J Appl Physiol 79:2029–2034

    CAS  PubMed  Google Scholar 

  • Bianchini F, Caderni G, Dolara P et al (1989) Effect of dietary fat, starch and cellulose on fecal bile acids in mice. J Nutr 119:1617–1624

    CAS  PubMed  Google Scholar 

  • Bielohuby M, Sisley S, Sandoval D, Herbach N, Zengin A, Fischereder M, Menhofer D, Stoehr BJ, Stemmer K, Wanke R, Tschöp MH, Seeley RJ, Bidlingmaier M (2013) Impaired glucose tolerance in rats fed low-carbohydrate, high-fat diets. Am J Physiol Endocrinol Metab 305:E1059–E1070. doi:10.1152/ajpendo.00208.2013

    Article  CAS  PubMed  Google Scholar 

  • Bisschop PH, de Metz J, Ackermans MT et al (2001) Dietary fat content alters insulin-mediated glucose metabolism in healthy men. Am J Clin Nutr 73:554–559

    CAS  PubMed  Google Scholar 

  • Bisschop PH, Ackermans MT, Endert E et al (2002) The effect of carbohydrate and fat variation in euenergetic diets on postabsorptive free fatty acid release. Br J Nutr 87:555–559

    Article  CAS  PubMed  Google Scholar 

  • Björntorp P, Fahlén M, Grimby G et al (1972) Carbohydrate and lipid metabolism in middle-aged, physically well-trained men. Metabolism 21:1037–1044

    Article  PubMed  Google Scholar 

  • Bonen A, Ball-Burnett M, Russel C (1998) Glucose tolerance is improved after low- and high-intensity exercise in middle-age men and women. Can J Appl Physiol 23:583–593

    Article  CAS  PubMed  Google Scholar 

  • Bradley U, Spence M, Courtney CH, McKinley MC, Ennis CN, McCance DR, McEneny J, Bell PM, Young IS, Hunter SJ (2009) Low-fat versus low-carbohydrate weight reduction diets: effects on weight loss, insulin resistance, and cardiovascular risk: a randomized control trial. Diabetes 58:2741–2748. doi:10.2337/db09-0098

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brøns C, Jensen CB, Storgaard H, Hiscock NJ, White A, Appel JS, Jacobsen S, Nilsson E, Larsen CM, Astrup A, Quistorff B, Vaag A (2009) Impact of short-term high-fat feeding on glucose and insulin metabolism in young healthy men. J Physiol 587:2387–2397. doi:10.1113/jphysiol.2009.169078

    Article  PubMed Central  PubMed  Google Scholar 

  • Chiasson JL, Josse RG, Gomis R et al (2002) Acarbose for prevention of type 2 diabetes mellitus: the STOP-NIDDM randomised trial. Lancet 359:2072–2077

    Article  CAS  PubMed  Google Scholar 

  • Chiasson JL, Josse RG, Gomis R et al (2003) Acarbose treatment and the risk of cardiovascular disease and hypertension in patients with impaired glucose tolerance: the STOP-NIDDM trial. JAMA 290:486–494

    Article  CAS  PubMed  Google Scholar 

  • Colberg SR, Zarrabi L, Bennington L, Nakave A, Thomas Somma C, Swain DP, Sechrist SR (2009) Postprandial walking is better for lowering the glycemic effect of dinner than pre-dinner exercise in type 2 diabetic individuals. J Am Med Dir Assoc 10:394–397. doi:10.1016/j.jamda.2009.03.015

    Article  PubMed  Google Scholar 

  • Cummings JH, Wiggins HS, Jenkins DJ et al (1978) Influence of diets high and low in animal fat on bowel habit, gastrointestinal transit time, fecal microflora, bile acid, and fat excretion. J Clin Invest 61:953–963

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • DECODE Study Group, The European Diabetes Epidemiology Group (1999) Glucose tolerance and mortality: comparison of WHO and American Diabetes Association diagnostic criteria. Lancet 354:617–621

    Article  Google Scholar 

  • DECODE Study Group, The European Diabetes Epidemiology Group (2001) Glucose tolerance and cardiovascular mortality: comparison of fasting and 2-hour diagnostic criteria. Arch Intern Med 161:397–405

    Article  Google Scholar 

  • Esposito K, Nappo F, Marfella R et al (2002) Inflammatory cytokine concentrations are acutely increased by hyperglycemia in humans: role of oxidative stress. Circulation 106:2067–2072

    Article  CAS  PubMed  Google Scholar 

  • Expert Committee on the Diagnosis and Classification of Diabetes Mellitus (1997) Report of the expert committee on the diagnosis and classification of diabetes mellitus. Diabetes Care 20:1183–1197

    Article  Google Scholar 

  • Ferrannini E, Barrett EJ, Bevilacqua S et al (1983) Effect of fatty acids on glucose production and utilization in man. J Clin Invest 72:1737–1747

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Foster GD, Wyatt HR, Hill JO et al (2003) A randomized trial of a low-carbohydrate diet for obesity. N Engl J Med 348:2082–2090

    Article  CAS  PubMed  Google Scholar 

  • Fox AK, Kaufman AE, Horowitz JF (2004) Adding fat calories to meals after exercise does not alter glucose tolerance. J Appl Physiol 97:11–16

    Article  PubMed  Google Scholar 

  • Garbow JR, Doherty JM, Schugar RC, Travers S, Weber ML, Wentz AE, Ezenwajiaku N, Cotter DG, Brunt EM, Crawford PA (2011) Hepatic steatosis, inflammation, and ER stress in mice maintained long term on a very low-carbohydrate ketogenic diet. Am J Physiol Gastrointest Liver Physiol 300:G956–G967. doi:10.1152/ajpgi.00539.2010

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Garetto LP, Richter EA, Goodman MN, Ruderman NB (1984) Enhanced muscle glucose metabolism after exercise in the rat: the two phases. Am J Physiol 246:E471–E475

    Google Scholar 

  • Genuth S, Alberti KG, Bennett P, Buse J, DeFronzo R, Kahn R, Kitzmiller J, Knowler WC, Lebovitz H, Lernmark A, Nathan D, Palmer J, Rizza R, Saudek C, Shaw J, Steffes M, Stern M, Tuomilehto J, Zimmet P, Expert Committee on the Diagnosis and Classification of Diabetes Mellitus (2003) Follow-up report on the diagnosis of diabetes mellitus. Diabetes Care 26:3160–3167

    Article  PubMed  Google Scholar 

  • Hanefeld M, Chiasson JL, Koehler C et al (2004) Acarbose slows progression of intima-media thickness of the carotid arteries in subjects with impaired glucose tolerance. Stroke 35:1073–1078

    Article  CAS  PubMed  Google Scholar 

  • Hayashi Y, Nagasaka S, Takahashi N et al (2005) A single bout of exercise at higher intensity enhances glucose effectiveness in sedentary men. J Clin Endocrinol Metab 90:4035–4040

    Article  CAS  PubMed  Google Scholar 

  • Hollenbeck CB, Haskell W, Rosenthal M et al (1985) Effect of habitual physical activity on regulation of insulin-stimulated glucose disposal in older males. J Am Geriatr Soc 33:273–277

    Article  CAS  PubMed  Google Scholar 

  • Houmard JA, Tanner CJ, Slentz CA et al (2004) Effect of the volume and intensity of exercise training on insulin sensitivity. J Appl Physiol 96:101–106

    Article  CAS  PubMed  Google Scholar 

  • Hu T, Mills KT, Yao L, Demanelis K, Eloustaz M, Yancy WS Jr, Kelly TN, He J, Bazzano LA (2012) Effects of low-carbohydrate diets versus low-fat diets on metabolic risk factors: a meta-analysis of randomized controlled clinical trials. Am J Epidemiol 176(Suppl 7):S44–S54. doi:10.1093/aje/kws264

    Article  PubMed Central  PubMed  Google Scholar 

  • Hughes VA, Fiatarone MA, Fielding RA et al (1993) Exercise increases muscle GLUT-4 levels and insulin action in subjects with impaired glucose tolerance. Am J Physiol 264:E855–E862

    CAS  PubMed  Google Scholar 

  • Johansen K, Munck O (1979) The relationship between maximal oxygen uptake and glucose tolerance/insulin response ratio in normal young men. Horm Metab Res 11:424–427

    Article  CAS  PubMed  Google Scholar 

  • Kawamori R, Tajima N, Iwamoto Y, Kashiwagi A, Shimamoto K, Kaku K (2009) Voglibose for prevention of type 2 diabetes mellitus: a randomised, double-blind trial in Japanese individuals with impaired glucose tolerance. Lancet 373:1607–1614. doi:10.1016/S0140-6736(09)60222-1

    Article  CAS  PubMed  Google Scholar 

  • Kawano H, Motoyama T, Hirashima O et al (1999) Hyperglycemia rapidly suppresses flow-mediated endothelium-dependent vasodilation of brachial artery. J Am Coll Cardiol 34:146–154

    Article  CAS  PubMed  Google Scholar 

  • King DS, Dalsky GP, Staten MA et al (1987) Insulin action and secretion in endurance-trained and untrained humans. J Appl Physiol 63:2247–2252

    CAS  PubMed  Google Scholar 

  • King DS, Baldus PJ, Sharp RL et al (1995) Time course for exercise-induced alterations in insulin action and glucose tolerance in middle-aged people. J Appl Physiol 78:17–22

    CAS  PubMed  Google Scholar 

  • Larsen JJ, Dela F, Kjaer M et al (1997) The effect of moderate exercise on postprandial glucose homeostasis in NIDDM patients. Diabetologia 40:447–453

    Article  CAS  PubMed  Google Scholar 

  • Larsen JJ, Dela F, Madsbad S et al (1999) The effect of intense exercise on postprandial glucose homeostasis in type II diabetic patients. Diabetologia 42:1282–1292

    Article  CAS  PubMed  Google Scholar 

  • Larsen RN, Mann NJ, Maclean E, Shaw JE (2011) The effect of high-protein, low-carbohydrate diets in the treatment of type 2 diabetes: a 12 month randomised controlled trial. Diabetologia 54:731–740. doi:10.1007/s00125-010-2027-y

    Article  CAS  PubMed  Google Scholar 

  • LeBlanc J, Nadeau A, Boulay M et al (1979) Effects of physical training and adiposity on glucose metabolism and 125I-insulin binding. J Appl Physiol 46:235–239

    CAS  PubMed  Google Scholar 

  • Leung N, Sakaue T, Carpentier A et al (2004) Prolonged increase of plasma non-esterified fatty acids fully abolishes the stimulatory effect of 24 hours of moderate hyperglycaemia on insulin sensitivity and pancreatic beta-cell function in obese men. Diabetologia 47:204–213

    Article  CAS  PubMed  Google Scholar 

  • Lohmann D, Liebold F, Heilmann W et al (1978) Diminished insulin response in highly trained athletes. Metabolism 27:521–524

    Article  CAS  PubMed  Google Scholar 

  • Macleod SF, Terada T, Chahal BS, Boulé NG (2013) Exercise lowers postprandial glucose but not fasting glucose in type 2 diabetes: a meta-analysis of studies using continuous glucose monitoring. Diabetes Metab Res Rev 29:593–603. doi:10.1002/dmrr.2461

    Article  CAS  PubMed  Google Scholar 

  • McAuley KA, Smith KJ, Taylor RW et al (2006) Long-term effects of popular dietary approaches on weight loss and features of insulin resistance. Int J Obes 30:342–349

    Article  CAS  Google Scholar 

  • Mikines KJ, Sonne B, Tronier B et al (1989) Effects of acute exercise and detraining on insulin action in trained men. J Appl Physiol 66:704–711

    Article  CAS  PubMed  Google Scholar 

  • Mikines KJ, Sonne B, Farrell PA et al (1998) Effect of physical exercise on sensitivity and responsiveness to insulin in humans. Am J Physiol 254:E248–E259

    Google Scholar 

  • Ministry of Health, Labour and Welfare of Japan (2011) National health and nutrition survey. (in Japanese)

    Google Scholar 

  • Monnier L, Mas E, Ginet C et al (2006) Activation of oxidative stress by acute glucose fluctuations compared with sustained chronic hyperglycemia in patients with type 2 diabetes. JAMA 295:1681–1687

    Article  CAS  PubMed  Google Scholar 

  • Nakagami T, DECODA Study Group (2004) Hyperglycaemia and mortality from all causes and from cardiovascular disease in five populations of Asian origin. Diabetologia 47:385–394

    Article  CAS  PubMed  Google Scholar 

  • Numao S, Kawano H, Endo N, Yamada Y, Konishi M, Takahashi M, Sakamoto S (2012) Short-term low carbohydrate/high-fat diet intake increases postprandial plasma glucose and glucagon-like peptide-1 levels during an oral glucose tolerance test in healthy men. Eur J Clin Nutr 66:926–931. doi:10.1038/ejcn.2012.58

    Article  CAS  PubMed  Google Scholar 

  • Numao S, Kawano H, Endo N, Yamada Y, Konishi M, Takahashi M, Sakamoto S (2013) Effects of a single bout of aerobic exercise on short-term low-carbohydrate/high-fat intake-induced postprandial glucose metabolism during an oral glucose tolerance test. Metabolism 62:1406–1415. doi:10.1016/j.metabol.2013.05.005

    Article  CAS  PubMed  Google Scholar 

  • Oshida Y, Yamanouchi K, Hayamizu S et al (1989) Long-term mild jogging increases insulin action despite no influence on body mass index or VO2 max. J Appl Physiol 66:2206–2210

    Article  CAS  PubMed  Google Scholar 

  • Pehleman TL, Peters SJ, Heigenhauser GJ et al (2005) Enzymatic regulation of glucose disposal in human skeletal muscle after a high-fat, low-carbohydrate diet. J Appl Physiol 98:100–107

    Article  CAS  PubMed  Google Scholar 

  • Richter EA, Garetto LP, Goodman MN, Ruderman NB (1984) Enhanced muscle glucose metabolism after exercise: modulation by local factors. Am J Physiol 246:E476–E482

    CAS  PubMed  Google Scholar 

  • Rose AJ, Richter EA (2005) Skeletal muscle glucose uptake during exercise: how is it regulated? Physiology 20:260–270

    Article  CAS  PubMed  Google Scholar 

  • Rosenthal M, Haskell WL, Solomon R et al (1983) Demonstration of a relationship between level of physical training and insulin-stimulated glucose utilization in normal humans. Diabetes 32:408–411

    Article  CAS  PubMed  Google Scholar 

  • Rynders CA, Weltman JY, Jiang B, Breton M, Patrie J, Barrett EJ, Weltman A (2014) Effects of exercise intensity on postprandial improvement in glucose disposal and insulin sensitivity in prediabetic adults. J Clin Endocrinol Metab 99:220–228. doi: 10.1210/jc.2013-2687

  • Sakamoto T, Ogawa H, Kawano H et al (2000) Rapid change of platelet aggregability in acute hyperglycemia. Detection by a novel laser-light scattering method. Thromb Haemost 83:475–479

    CAS  PubMed  Google Scholar 

  • Schenk S, Horowitz JF (2007) Acute exercise increases triglyceride synthesis in skeletal muscle and prevents fatty acid-induced insulin resistance. J Clin Invest 117:1690–1698

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schenk S, Cook JN, Kaufman AE et al (2005) Postexercise insulin sensitivity is not impaired after an overnight lipid infusion. Am J Physiol Endocrinol Metab 288:E519–E525

    Article  CAS  PubMed  Google Scholar 

  • Seals DR, Hagberg JM, Allen WK et al (1984) Glucose tolerance in young and older athletes and sedentary men. J Appl Physiol 56:1521–1525

    CAS  PubMed  Google Scholar 

  • Shai I, Schwarzfuchs D, Henkin Y, Shahar DR, Witkow S, Greenberg I, Golan R, Fraser D, Bolotin A, Vardi H, Tangi-Rozental O, Zuk-Ramot R, Sarusi B, Brickner D, Schwartz Z, Sheiner E, Marko R, Katorza E, Thiery J, Fiedler GM, Blüher M, Stumvoll M, Stampfer MJ, Dietary Intervention Randomized Controlled Trial (DIRECT) Group (2008) Weight loss with a low-carbohydrate, Mediterranean, or low-fat diet. N Engl J Med 359:229–241. doi:10.1056/NEJMoa0708681

    Article  CAS  PubMed  Google Scholar 

  • Sparti A, Décombaz J (1992) Effect of diet on glucose tolerance 36 hours after glycogen-depleting exercise. Eur J Clin Nutr 46:377–385

    CAS  PubMed  Google Scholar 

  • Swinburn BA, Boyce VL, Bergman RN et al (1991) Deterioration in carbohydrate metabolism and lipoprotein changes induced by modern, high fat diet in Pima Indians and Caucasians. J Clin Endocrinol Metab 73:156–165

    Article  CAS  PubMed  Google Scholar 

  • Tanaka S, Hayashi T, Toyoda T et al (2007) High-fat diet impairs the effects of a single bout of endurance exercise on glucose transport and insulin sensitivity in rat skeletal muscle. Metabolism 56:1719–1728

    Article  CAS  PubMed  Google Scholar 

  • Wheeler ML, Dunbar SA, Jaacks LM, Karmally W, Mayer-Davis EJ, Wylie-Rosett J, Yancy WS Jr (2012) Macronutrients, food groups, and eating patterns in the management of diabetes: a systematic review of the literature, 2010. Diabetes Care 35:434–445. doi:10.2337/dc11-2216

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Williams SB, Goldfine AB, Timimi FK et al (1998) Acute hyperglycemia attenuates endothelium-dependent vasodilation in humans in vivo. Circulation 97:1695–1701

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by a Grant-in-aid for the Young Scientists (B) (22700703) and for the Global COE program “Sport Sciences for the promotion of Active Life” (2010–2011) award by the Ministry of Education, Culture, Sports Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeharu Numao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Numao, S. (2015). Role of Physical Exercise on Postprandial Blood Glucose Responses to Low-Carbohydrate/High-Fat Diet Intake. In: Kanosue, K., Oshima, S., Cao, ZB., Oka, K. (eds) Physical Activity, Exercise, Sedentary Behavior and Health. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55333-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55333-5_13

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55332-8

  • Online ISBN: 978-4-431-55333-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics