Skip to main content

Anchorage-Dependent Multicellular Aggregate Formation Induces CD44 High Cancer Stem Cell-Like Phenotypes in Adult T Cell Leukemia/Lymphoma Cells

  • Chapter
Inflammation and Immunity in Cancer
  • 1404 Accesses

Abstract

Adult T cell leukemia/lymphoma (ATL) is a highly invasive and intractable T cell malignancy caused by human T cell leukemia virus-1 infection. Leukemia/lymphoma cells that have invaded the tissues exhibit a propensity for strong resistance to chemotherapy, presenting a major obstacle to the treatment of ATL patients. Therefore, understanding how tissue-infiltrating leukemia/lymphoma cells acquire intractable features is important for developing effective treatments for ATL patients. We have recently found that, when co-cultured with epithelial-like feeder cells, ATL cells form anchorage-dependent multicellular aggregates and that a fraction of aggregate-forming ATL cells acquire quiescent CD44 high cancer stem cell-like phenotypes. This observation suggests that the intractability of tissue-infiltrating ATL cells may be partly accounted for by the acquisition of cancer stem cell-like properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ben-Porath I, Thomson MW, Carey VJ et al (2008) An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat Genet 40(5):499–507

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bittencourt AL, de Oliveira MF (2010) Cutaneous manifestations associated with HTLV-1 infection. Int J Dermatol 49(10):1099–1110

    Article  PubMed  Google Scholar 

  • Borovski T, De Sousa E Melo F et al (2011) Cancer stem cell niche: the place to be. Cancer Res 71(3):634–639

    Article  CAS  PubMed  Google Scholar 

  • Bourguignon LY, Peyrollier K, Xia W et al (2008) Hyaluronan-CD44 interaction activates stem cell marker Nanog, Stat-3-mediated MDR1 gene expression, and ankyrin-regulated multidrug efflux in breast and ovarian tumor cells. J Biol Chem 283(25):17635–17651

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brown RL, Reinke LM, Damerow MS et al (2011) CD44 splice isoform switching in human and mouse epithelium is essential for epithelial-mesenchymal transition and breast cancer progression. J Clin Invest 121(3):1064–1074

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Catalina P, Montes R, Ligero G et al (2008) Human ESCs predisposition to karyotypic instability: is a matter of culture adaptation or differential vulnerability among hESC lines due to inherent properties? Mol Cancer 7:76

    Article  PubMed Central  PubMed  Google Scholar 

  • Chagan-Yasutan H, Tsukasaki K, Takahashi Y et al (2011) Involvement of osteopontin and its signaling molecule CD44 in clinicopathological features of adult T cell leukemia. Leuk Res 35(11):1484–1490

    Article  CAS  PubMed  Google Scholar 

  • Chambers I, Tomlinson SR (2009) The transcriptional foundation of pluripotency. Development 136(14):2311–2322

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dean M, Fojo T, Bates S (2005) Tumour stem cells and drug resistance. Nat Rev Cancer 5(4):275–284

    Article  CAS  PubMed  Google Scholar 

  • Draper JS, Smith K, Gokhale P et al (2004) Recurrent gain of chromosomes 17q and 12 in cultured human embryonic stem cells. Nat Biotechnol 22(1):53–54

    Article  CAS  PubMed  Google Scholar 

  • Ego T, Ariumi Y, Shimotohno K (2002) The interaction of HTLV-1 Tax with HDAC1 negatively regulates the viral gene expression. Oncogene 21(47):7241–7246

    Article  CAS  PubMed  Google Scholar 

  • Furukawa Y, Osame M, Kubota R et al (1995) Human T-cell leukemia virus type-1 (HTLV-1) Tax is expressed at the same level in infected cells of HTLV-1-associated myelopathy or tropical spastic paraparesis patients as in asymptomatic carriers but at a lower level in adult T-cell leukemia cells. Blood 85(7):1865–1870

    CAS  PubMed  Google Scholar 

  • Gravelle P, Jean C, Familiades J et al (2014) Cell growth in aggregates determines gene expression, proliferation, survival, chemoresistance, and sensitivity to immune effectors in follicular lymphoma. Am J Pathol 184(1):282–295

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa H, Sawa H, Lewis MJ et al (2006) Thymus-derived leukemia-lymphoma in mice transgenic for the Tax gene of human T-lymphotropic virus type I. Nat Med 12(4):466–472

    Article  CAS  PubMed  Google Scholar 

  • Havasi P, Nabioni M, Soleimani M et al (2013) Mesenchymal stem cells as an appropriate feeder layer for prolonged in vitro culture of human induced pluripotent stem cells. Mol Biol Rep 40(4):3023–3031

    Article  CAS  PubMed  Google Scholar 

  • Hovatta O, Mikkola M, Gertow K et al (2003) A culture system using human foreskin fibroblasts as feeder cells allows production of human embryonic stem cells. Hum Reprod 18(7):1404–1409

    Article  PubMed  Google Scholar 

  • Hudson LG, Zeineldin R, Stack MS (2008) Phenotypic plasticity of neoplastic ovarian epithelium: unique cadherin profiles in tumor progression. Clin Exp Metastasis 25(6):643–655

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Huntly BJ, Gilliland DG (2005) Leukaemia stem cells and the evolution of cancer-stem-cell research. Nat Rev Cancer 5(4):311–321

    Article  CAS  PubMed  Google Scholar 

  • Ishimoto T, Nagano O, Yae T et al (2011) CD44 variant regulates redox status in cancer cells by stabilizing the xCT subunit of system xc(−) and thereby promotes tumor growth. Cancer Cell 19(3):387–400

    Article  CAS  PubMed  Google Scholar 

  • Kinpara S, Hasegawa A, Utsunomiya A et al (2009) Stromal cell-mediated suppression of human T-cell leukemia virus type 1 expression in vitro and in vivo by type I interferon. J Virol 83(10):5101–5108

    Article  PubMed Central  PubMed  Google Scholar 

  • Li L, Bhatia R (2011) Stem cell quiescence. Clin Cancer Res 17(15):4936–4941

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li L, Neaves WB (2006) Normal stem cells and cancer stem cells: the niche matters. Cancer Res 66(9):4553–4557

    Article  CAS  PubMed  Google Scholar 

  • Mani SA, Guo W, Liao MJ et al (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133(4):704–715

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mann BS, Johnson JR, Cohen MH et al (2007) FDA approval summary: vorinostat for treatment of advanced primary cutaneous T-cell lymphoma. Oncologist 12(10):1247–1252

    Article  CAS  PubMed  Google Scholar 

  • Marks PA, Richon VM, Rifkind RA (2000) Histone deacetylase inhibitors: inducers of differentiation or apoptosis of transformed cells. J Natl Cancer Inst 92(15):1210–1216

    Article  CAS  PubMed  Google Scholar 

  • McKenney PT, Driks A, Eichenberger P (2013) The Bacillus subtilis endospore: assembly and functions of the multilayered coat. Nat Rev Microbiol 11(1):33–44

    Article  CAS  PubMed  Google Scholar 

  • Medema JP (2013) Cancer stem cells: the challenges ahead. Nat Cell Biol 15(4):338–344

    Article  CAS  PubMed  Google Scholar 

  • Michael B, Nair AM, Datta A et al (2006) Histone acetyltransferase (HAT) activity of p300 modulates human T lymphotropic virus type 1 p30II-mediated repression of LTR transcriptional activity. Virology 354(2):225–239

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Miyatake Y, Oliveira AL, Jarboui MA et al (2013) Protective roles of epithelial cells in the survival of adult T-cell leukemia/lymphoma cells. Am J Pathol 182(5):1832–1842

    Article  CAS  PubMed  Google Scholar 

  • Mosley AJ, Meekings KN, McCarthy C et al (2006) Histone deacetylase inhibitors increase virus gene expression but decrease CD8+ cell antiviral function in HTLV-1 infection. Blood 108(12):3801–3807

    Article  CAS  PubMed  Google Scholar 

  • Nasr R, El Hajj H, Kfoury Y et al (2011) Controversies in targeted therapy of adult T cell leukemia/lymphoma: ON target or OFF target effects? Viruses 3(6):750–769

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ohshima K (2007) Pathological features of diseases associated with human T-cell leukemia virus type I. Cancer Sci 98(6):772–778

    Article  CAS  PubMed  Google Scholar 

  • Olsen EA, Kim YH, Kuzel TM et al (2007) Phase IIb multicenter trial of vorinostat in patients with persistent, progressive, or treatment refractory cutaneous T-cell lymphoma. J Clin Oncol 25(21):3109–3115

    Article  CAS  PubMed  Google Scholar 

  • Piekarz RL, Frye R, Prince HM et al (2011) Phase 2 trial of romidepsin in patients with peripheral T-cell lymphoma. Blood 117(22):5827–5834

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Poiesz BJ, Ruscetti FW, Gazdar AF et al (1980) Detection and isolation of type C retrovirus particles from fresh and cultured lymphocytes of a patient with cutaneous T-cell lymphoma. Proc Natl Acad Sci U S A 77(12):7415–7419

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Solis MA, Chen YH, Wong TY et al (2012) Hyaluronan regulates cell behavior: a potential niche matrix for stem cells. Biochem Res Int 2012:346972

    Article  PubMed Central  PubMed  Google Scholar 

  • Su YJ, Lai HM, Chang YW et al (2011) Direct reprogramming of stem cell properties in colon cancer cells by CD44. EMBO J 30(15):3186–3199

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Takahashi K, Tanabe K, Ohnuki M et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K, Narita M, Yokura M et al (2009) Human induced pluripotent stem cells on autologous feeders. PLoS One 4(12):e8067

    Article  PubMed Central  PubMed  Google Scholar 

  • Taniguchi Y, Nosaka K, Yasunaga J et al (2005) Silencing of human T-cell leukemia virus type I gene transcription by epigenetic mechanisms. Retrovirology 2:64

    Article  PubMed Central  PubMed  Google Scholar 

  • Uchiyama T, Yodoi J, Sagawa K et al (1977) Adult T-cell leukemia: clinical and hematologic features of 16 cases. Blood 50(3):481–492

    CAS  PubMed  Google Scholar 

  • van Os RP, Dethmers-Ausema B, de Haan G (2008) In vitro assays for cobblestone area-forming cells, LTC-IC, and CFU-C. Methods Mol Biol 430:143–157

    Article  PubMed  Google Scholar 

  • Wagner W, Wein F, Roderburg C et al (2007) Adhesion of hematopoietic progenitor cells to human mesenchymal stem cells as a model for cell-cell interaction. Exp Hematol 35(2):314–325

    Article  CAS  PubMed  Google Scholar 

  • Wagner W, Wein F, Roderburg C et al (2008) Adhesion of human hematopoietic progenitor cells to mesenchymal stromal cells involves CD44. Cells Tissues Organs 188(1–2):160–169

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Oron E, Nelson B et al (2012) Distinct lineage specification roles for NANOG, OCT4, and SOX2 in human embryonic stem cells. Cell Stem Cell 10(4):440–454

    Article  CAS  PubMed  Google Scholar 

  • West AC, Johnstone RW (2014) New and emerging HDAC inhibitors for cancer treatment. J Clin Invest 124(1):30–39

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yoshida M, Miyoshi I, Hinuma Y (1982) Isolation and characterization of retrovirus from cell lines of human adult T-cell leukemia and its implication in the disease. Proc Natl Acad Sci U S A 79(6):2031–2035

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zöller M (2011) CD44: can a cancer-initiating cell profit from an abundantly expressed molecule? Nat Rev Cancer 11(4):254–267

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by Grants-in-Aid for Scientific Research from The Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT).

Competing Financial Interests

The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yukiko Miyatake .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Miyatake, Y., Kasahara, M. (2015). Anchorage-Dependent Multicellular Aggregate Formation Induces CD44 High Cancer Stem Cell-Like Phenotypes in Adult T Cell Leukemia/Lymphoma Cells. In: Seya, T., Matsumoto, M., Udaka, K., Sato, N. (eds) Inflammation and Immunity in Cancer. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55327-4_6

Download citation

Publish with us

Policies and ethics