Advertisement

Anchorage-Dependent Multicellular Aggregate Formation Induces CD44 High Cancer Stem Cell-Like Phenotypes in Adult T Cell Leukemia/Lymphoma Cells

  • Yukiko Miyatake
  • Masanori Kasahara

Abstract

Adult T cell leukemia/lymphoma (ATL) is a highly invasive and intractable T cell malignancy caused by human T cell leukemia virus-1 infection. Leukemia/lymphoma cells that have invaded the tissues exhibit a propensity for strong resistance to chemotherapy, presenting a major obstacle to the treatment of ATL patients. Therefore, understanding how tissue-infiltrating leukemia/lymphoma cells acquire intractable features is important for developing effective treatments for ATL patients. We have recently found that, when co-cultured with epithelial-like feeder cells, ATL cells form anchorage-dependent multicellular aggregates and that a fraction of aggregate-forming ATL cells acquire quiescent CD44 high cancer stem cell-like phenotypes. This observation suggests that the intractability of tissue-infiltrating ATL cells may be partly accounted for by the acquisition of cancer stem cell-like properties.

Keywords

Adult T-cell leukemia Cancer stem cells CD44 Coculture Multicellular aggregates 

Notes

Acknowledgments

This work was supported in part by Grants-in-Aid for Scientific Research from The Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT).

Competing Financial Interests

The authors declare no competing financial interests.

References

  1. Ben-Porath I, Thomson MW, Carey VJ et al (2008) An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat Genet 40(5):499–507CrossRefPubMedCentralPubMedGoogle Scholar
  2. Bittencourt AL, de Oliveira MF (2010) Cutaneous manifestations associated with HTLV-1 infection. Int J Dermatol 49(10):1099–1110CrossRefPubMedGoogle Scholar
  3. Borovski T, De Sousa E Melo F et al (2011) Cancer stem cell niche: the place to be. Cancer Res 71(3):634–639CrossRefPubMedGoogle Scholar
  4. Bourguignon LY, Peyrollier K, Xia W et al (2008) Hyaluronan-CD44 interaction activates stem cell marker Nanog, Stat-3-mediated MDR1 gene expression, and ankyrin-regulated multidrug efflux in breast and ovarian tumor cells. J Biol Chem 283(25):17635–17651CrossRefPubMedCentralPubMedGoogle Scholar
  5. Brown RL, Reinke LM, Damerow MS et al (2011) CD44 splice isoform switching in human and mouse epithelium is essential for epithelial-mesenchymal transition and breast cancer progression. J Clin Invest 121(3):1064–1074CrossRefPubMedCentralPubMedGoogle Scholar
  6. Catalina P, Montes R, Ligero G et al (2008) Human ESCs predisposition to karyotypic instability: is a matter of culture adaptation or differential vulnerability among hESC lines due to inherent properties? Mol Cancer 7:76CrossRefPubMedCentralPubMedGoogle Scholar
  7. Chagan-Yasutan H, Tsukasaki K, Takahashi Y et al (2011) Involvement of osteopontin and its signaling molecule CD44 in clinicopathological features of adult T cell leukemia. Leuk Res 35(11):1484–1490CrossRefPubMedGoogle Scholar
  8. Chambers I, Tomlinson SR (2009) The transcriptional foundation of pluripotency. Development 136(14):2311–2322CrossRefPubMedCentralPubMedGoogle Scholar
  9. Dean M, Fojo T, Bates S (2005) Tumour stem cells and drug resistance. Nat Rev Cancer 5(4):275–284CrossRefPubMedGoogle Scholar
  10. Draper JS, Smith K, Gokhale P et al (2004) Recurrent gain of chromosomes 17q and 12 in cultured human embryonic stem cells. Nat Biotechnol 22(1):53–54CrossRefPubMedGoogle Scholar
  11. Ego T, Ariumi Y, Shimotohno K (2002) The interaction of HTLV-1 Tax with HDAC1 negatively regulates the viral gene expression. Oncogene 21(47):7241–7246CrossRefPubMedGoogle Scholar
  12. Furukawa Y, Osame M, Kubota R et al (1995) Human T-cell leukemia virus type-1 (HTLV-1) Tax is expressed at the same level in infected cells of HTLV-1-associated myelopathy or tropical spastic paraparesis patients as in asymptomatic carriers but at a lower level in adult T-cell leukemia cells. Blood 85(7):1865–1870PubMedGoogle Scholar
  13. Gravelle P, Jean C, Familiades J et al (2014) Cell growth in aggregates determines gene expression, proliferation, survival, chemoresistance, and sensitivity to immune effectors in follicular lymphoma. Am J Pathol 184(1):282–295CrossRefPubMedGoogle Scholar
  14. Hasegawa H, Sawa H, Lewis MJ et al (2006) Thymus-derived leukemia-lymphoma in mice transgenic for the Tax gene of human T-lymphotropic virus type I. Nat Med 12(4):466–472CrossRefPubMedGoogle Scholar
  15. Havasi P, Nabioni M, Soleimani M et al (2013) Mesenchymal stem cells as an appropriate feeder layer for prolonged in vitro culture of human induced pluripotent stem cells. Mol Biol Rep 40(4):3023–3031CrossRefPubMedGoogle Scholar
  16. Hovatta O, Mikkola M, Gertow K et al (2003) A culture system using human foreskin fibroblasts as feeder cells allows production of human embryonic stem cells. Hum Reprod 18(7):1404–1409CrossRefPubMedGoogle Scholar
  17. Hudson LG, Zeineldin R, Stack MS (2008) Phenotypic plasticity of neoplastic ovarian epithelium: unique cadherin profiles in tumor progression. Clin Exp Metastasis 25(6):643–655CrossRefPubMedCentralPubMedGoogle Scholar
  18. Huntly BJ, Gilliland DG (2005) Leukaemia stem cells and the evolution of cancer-stem-cell research. Nat Rev Cancer 5(4):311–321CrossRefPubMedGoogle Scholar
  19. Ishimoto T, Nagano O, Yae T et al (2011) CD44 variant regulates redox status in cancer cells by stabilizing the xCT subunit of system xc(−) and thereby promotes tumor growth. Cancer Cell 19(3):387–400CrossRefPubMedGoogle Scholar
  20. Kinpara S, Hasegawa A, Utsunomiya A et al (2009) Stromal cell-mediated suppression of human T-cell leukemia virus type 1 expression in vitro and in vivo by type I interferon. J Virol 83(10):5101–5108CrossRefPubMedCentralPubMedGoogle Scholar
  21. Li L, Bhatia R (2011) Stem cell quiescence. Clin Cancer Res 17(15):4936–4941CrossRefPubMedCentralPubMedGoogle Scholar
  22. Li L, Neaves WB (2006) Normal stem cells and cancer stem cells: the niche matters. Cancer Res 66(9):4553–4557CrossRefPubMedGoogle Scholar
  23. Mani SA, Guo W, Liao MJ et al (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133(4):704–715CrossRefPubMedCentralPubMedGoogle Scholar
  24. Mann BS, Johnson JR, Cohen MH et al (2007) FDA approval summary: vorinostat for treatment of advanced primary cutaneous T-cell lymphoma. Oncologist 12(10):1247–1252CrossRefPubMedGoogle Scholar
  25. Marks PA, Richon VM, Rifkind RA (2000) Histone deacetylase inhibitors: inducers of differentiation or apoptosis of transformed cells. J Natl Cancer Inst 92(15):1210–1216CrossRefPubMedGoogle Scholar
  26. McKenney PT, Driks A, Eichenberger P (2013) The Bacillus subtilis endospore: assembly and functions of the multilayered coat. Nat Rev Microbiol 11(1):33–44CrossRefPubMedGoogle Scholar
  27. Medema JP (2013) Cancer stem cells: the challenges ahead. Nat Cell Biol 15(4):338–344CrossRefPubMedGoogle Scholar
  28. Michael B, Nair AM, Datta A et al (2006) Histone acetyltransferase (HAT) activity of p300 modulates human T lymphotropic virus type 1 p30II-mediated repression of LTR transcriptional activity. Virology 354(2):225–239CrossRefPubMedCentralPubMedGoogle Scholar
  29. Miyatake Y, Oliveira AL, Jarboui MA et al (2013) Protective roles of epithelial cells in the survival of adult T-cell leukemia/lymphoma cells. Am J Pathol 182(5):1832–1842CrossRefPubMedGoogle Scholar
  30. Mosley AJ, Meekings KN, McCarthy C et al (2006) Histone deacetylase inhibitors increase virus gene expression but decrease CD8+ cell antiviral function in HTLV-1 infection. Blood 108(12):3801–3807CrossRefPubMedGoogle Scholar
  31. Nasr R, El Hajj H, Kfoury Y et al (2011) Controversies in targeted therapy of adult T cell leukemia/lymphoma: ON target or OFF target effects? Viruses 3(6):750–769CrossRefPubMedCentralPubMedGoogle Scholar
  32. Ohshima K (2007) Pathological features of diseases associated with human T-cell leukemia virus type I. Cancer Sci 98(6):772–778CrossRefPubMedGoogle Scholar
  33. Olsen EA, Kim YH, Kuzel TM et al (2007) Phase IIb multicenter trial of vorinostat in patients with persistent, progressive, or treatment refractory cutaneous T-cell lymphoma. J Clin Oncol 25(21):3109–3115CrossRefPubMedGoogle Scholar
  34. Piekarz RL, Frye R, Prince HM et al (2011) Phase 2 trial of romidepsin in patients with peripheral T-cell lymphoma. Blood 117(22):5827–5834CrossRefPubMedCentralPubMedGoogle Scholar
  35. Poiesz BJ, Ruscetti FW, Gazdar AF et al (1980) Detection and isolation of type C retrovirus particles from fresh and cultured lymphocytes of a patient with cutaneous T-cell lymphoma. Proc Natl Acad Sci U S A 77(12):7415–7419CrossRefPubMedCentralPubMedGoogle Scholar
  36. Solis MA, Chen YH, Wong TY et al (2012) Hyaluronan regulates cell behavior: a potential niche matrix for stem cells. Biochem Res Int 2012:346972CrossRefPubMedCentralPubMedGoogle Scholar
  37. Su YJ, Lai HM, Chang YW et al (2011) Direct reprogramming of stem cell properties in colon cancer cells by CD44. EMBO J 30(15):3186–3199CrossRefPubMedCentralPubMedGoogle Scholar
  38. Takahashi K, Tanabe K, Ohnuki M et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872CrossRefPubMedGoogle Scholar
  39. Takahashi K, Narita M, Yokura M et al (2009) Human induced pluripotent stem cells on autologous feeders. PLoS One 4(12):e8067CrossRefPubMedCentralPubMedGoogle Scholar
  40. Taniguchi Y, Nosaka K, Yasunaga J et al (2005) Silencing of human T-cell leukemia virus type I gene transcription by epigenetic mechanisms. Retrovirology 2:64CrossRefPubMedCentralPubMedGoogle Scholar
  41. Uchiyama T, Yodoi J, Sagawa K et al (1977) Adult T-cell leukemia: clinical and hematologic features of 16 cases. Blood 50(3):481–492PubMedGoogle Scholar
  42. van Os RP, Dethmers-Ausema B, de Haan G (2008) In vitro assays for cobblestone area-forming cells, LTC-IC, and CFU-C. Methods Mol Biol 430:143–157CrossRefPubMedGoogle Scholar
  43. Wagner W, Wein F, Roderburg C et al (2007) Adhesion of hematopoietic progenitor cells to human mesenchymal stem cells as a model for cell-cell interaction. Exp Hematol 35(2):314–325CrossRefPubMedGoogle Scholar
  44. Wagner W, Wein F, Roderburg C et al (2008) Adhesion of human hematopoietic progenitor cells to mesenchymal stromal cells involves CD44. Cells Tissues Organs 188(1–2):160–169CrossRefPubMedGoogle Scholar
  45. Wang Z, Oron E, Nelson B et al (2012) Distinct lineage specification roles for NANOG, OCT4, and SOX2 in human embryonic stem cells. Cell Stem Cell 10(4):440–454CrossRefPubMedGoogle Scholar
  46. West AC, Johnstone RW (2014) New and emerging HDAC inhibitors for cancer treatment. J Clin Invest 124(1):30–39CrossRefPubMedCentralPubMedGoogle Scholar
  47. Yoshida M, Miyoshi I, Hinuma Y (1982) Isolation and characterization of retrovirus from cell lines of human adult T-cell leukemia and its implication in the disease. Proc Natl Acad Sci U S A 79(6):2031–2035CrossRefPubMedCentralPubMedGoogle Scholar
  48. Zöller M (2011) CD44: can a cancer-initiating cell profit from an abundantly expressed molecule? Nat Rev Cancer 11(4):254–267CrossRefPubMedGoogle Scholar

Copyright information

© Springer Japan 2015

Authors and Affiliations

  1. 1.Department of PathologyHokkaido University Graduate School of MedicineSapporoJapan

Personalised recommendations