Skip to main content

Enhancement of Efficacy of Wilms’ Tumor Gene WT1 Product-derived Peptide Cancer Vaccine by Co-administration with Immunopotentiating Agents: Lessons from Mouse Models

  • Chapter
Inflammation and Immunity in Cancer

Abstract

To induce and activate tumor-associated antigen-specific cytotoxic T lymphocytes (CTLs) for cancer immunity, it is important not only to select potent CTL epitopes but also to combine them with appropriate immunopotentiating agents. Wilms’ tumor gene W T1 is expressed at high levels in many kinds of hematological and solid malignancies. WT1 gene products have high immunogenicity and have been reported to serve as a promising cancer antigen for tumor-specific immunotherapy. We have started WT1 peptide vaccine clinical trials since 2001, and demonstrated that WT1 peptide can induce WT1-specific immunologic responses and the associated clinical responses. To enhance the WT1 peptide vaccine’s therapeutic efficacy, we investigated various immunopotentiating agents that co-administer with WT1 peptide vaccine, using mice models for WT1 peptide cancer immunotherapy. Mycobacterium bovis bacillus Calmette-Guérin cell wall skeleton (BCG-CWS), which is well-known to activate dendritic cells (DCs), i.e., activate innate immunity, could induce and/or activate WT1-specific CTLs in combination with WT1 peptide vaccination. Interferon (IFN)-β is a type I IFN, and is known for its various anticancer properties. Co-administration of WT1 peptide and IFN-β enhanced tumor immunity mainly through the induction of WT1-specific CTLs, enhancement of natural killer (NK) activity, and promotion of major histocompatibility complex (MHC) class I expression on the tumor cells. WT1 peptide vaccination combined with BCG-CWS or IFN-β can thus be expected to enhance the clinical efficacy of WT1 immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akazawa T, Masuda H, Saeki Y et al (2004) Adjuvant-mediated tumor regression and tumor-specific cytotoxic response are impaired in MyD88-deficient mice. Cancer Res 64:757–764

    Article  CAS  PubMed  Google Scholar 

  • Anguille S, Lion E, Willemen Y, Smits EL et al (2011) Interferon-α in acute myeloid leukemia: an old drug revisited. Leukemia 25:739–748

    Article  CAS  PubMed  Google Scholar 

  • Azuma I, Seya T (2000) Development of immunoadjuvants for immunotherapy of cancer. Int Immunopharmacol 1:1249–1259

    Article  Google Scholar 

  • Azuma I, Yamamura Y (1979) Immunotherapy of cancer with BCG cell-wall skeleton and related materials. In: Sugimura T, Endo H, Ono T, Sugano H (eds) Progress in cancer biochemistry, Gann monograph on cancer research 24. Japan Scientific Societies Press, Tokyo, pp 122–141

    Google Scholar 

  • Begum NA, Tsuji S, Nomura M et al (1999) Human MD-1 homologue is a BCG-regulated gene product in monocytes: its identification by differential display. Biochem Biophys Res Commun 1256:325–329

    Article  Google Scholar 

  • Beppu T, Kamada K, Nakamura R et al (2003) A phase II study of radiotherapy after hyperbaric oxygenation combined with interferonbeta and nimustine hydrochloride to treat supratentorial malignant gliomas. J Neurooncol 61:161–170

    Article  PubMed  Google Scholar 

  • Bergmann L, Miething C, Maurer U et al (1997) High levels of Wilms’ tumor gene (wt1) mRNA in acute myeloid leukemias are associated with a worse long-term outcome. Blood 90:1217–1225

    CAS  PubMed  Google Scholar 

  • Briegar J, Weidmann E, Fenchel K et al (1994) The expression of the Wilms’ tumor gene in acute myelocytic leukemias as a possible marker for leukemic blast cells. Leukemia 8:2138–2143

    Google Scholar 

  • Call KM, Glaser T, Ito CY et al (1990) Isolation and characterization of a zinc finger polypeptide gene at the human chromosome 11 Wilms’ tumor locus. Cell 60:509–520

    Article  CAS  PubMed  Google Scholar 

  • Cheever MA, Allison JP, Ferris AS et al (2009) The prioritization of cancer antigens: a National Cancer Institute pilot project for the acceleration of translational research. Clin Cancer Res 15:5323–5337

    Article  PubMed  Google Scholar 

  • Chen Q, Gong B, Mahmoud-Ahmed AS et al (2001) Apo2L/TRAIL and Bcl-2-related proteins regulate type I interferon-induced apoptosis in multiple myeloma. Blood 98:2183–2192

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chiba Y, Hashimoto N, Tsuboi A et al (2010) Effects of concomitant temozolomide and radiation therapies on WT1-specific T-cells in malignant glioma. Jpn J Clin Oncol 40:395–403

    Article  PubMed  Google Scholar 

  • Degli-Esposti MA, Smyth MJ (2005) Close encounters of different kinds: dendritic cells and NK cells take centre stage. Nat Rev Immunol 5:112–124

    Article  CAS  PubMed  Google Scholar 

  • Dezfouli S, Hatzinisiriou I, Ralph SJ (2003) Enhancing CTL responses to melanoma cell vaccines in vivo: synergistic increases obtained using IFN-γ primed and IFN-β treated B7-1+ B16-F10 melanoma cells. Immunol Cell Biol 81:459–471

    Article  CAS  PubMed  Google Scholar 

  • Dhib-Jalbut SS, Cowan EP (1993) Direct evidence that interferon-β mediates enhanced HLA-class I expression in measles virus-infected cells. J Immunol 11:6248–6258

    Google Scholar 

  • Elisseeva OA, Oka Y, Tsuboi A et al (2002) Humoral immune responses against Wilms tumor gene WT1 product in patients with hematopoietic malignancies. Blood 99:3272–3279

    Article  CAS  PubMed  Google Scholar 

  • Fedele G, Frasca L, Palazzo R et al (2004) CD38 is expressed on human mature monocyte-derived dendritic cells and is functionally involved in CD83 expression and IL-12 induction. Eur J Immunol 34:1342–1350

    Article  CAS  PubMed  Google Scholar 

  • Fine HA, Wen PY, Robertson M et al (1997) A phase I trial of a new recombinant human beta-interferon (BG9015) for the treatment of patients with recurrent gliomas. Clin Cancer Res 3:381–387

    CAS  PubMed  Google Scholar 

  • Gao L, Bellantuono I, Elsässer A et al (2000) Selective elimination of leukemic CD34+ progenitor cells by cytotoxic T lymphocytes specific for WT1. Blood 95:2198–2203

    CAS  PubMed  Google Scholar 

  • Gehring S, Gregory SH, Kuzushita N et al (2005) Type 1 interferon augments DNA-based vaccination against hepatitis C virus core protein. J Med Virol 75:249–257

    Article  CAS  PubMed  Google Scholar 

  • Gessler M, Poustka A, Cavenee W et al (1990) Homozygous deletion in Wilms tumors of a zinc-finger gene identified by chromosome jumping. Nature 343:774–778

    Article  CAS  PubMed  Google Scholar 

  • Gresser I (2007) The antitumor effects of interferon: a personal history. Biochimie 89:723–728

    Article  CAS  PubMed  Google Scholar 

  • Hashii Y, Sato E, Ohta H et al (2010) WT1 peptide immunotherapy for cancer in children and young adults. Pediatr Blood Cancer 55:352–355

    Article  PubMed  Google Scholar 

  • Hashii Y, Sato-Miyashita E, Matsumura R et al (2012) WT1 peptide vaccination following allogeneic stem cell transplantation in pediatric leukemic patients with high risk for relapse: successful maintenance of durable remission. Leukemia 26:530–532

    Article  CAS  PubMed  Google Scholar 

  • Hayashi A (1994) Interferon as a marker for the effective cancer immunotherapy with BCG-CWS wall skeleton. Proc Jpn Acad 70(Ser. B):205–209

    Article  CAS  Google Scholar 

  • Hayashi A, Doi O, Azuma I et al (1998) Immunofriendly use of BCG-CWS-cell wall skeleton remarkably improves the survival rate of various cancer patients. Proc Jpn Acad 74(B):50–55

    Article  Google Scholar 

  • He T, Tang C, Xu S et al (2007) Interferon gamma stimulates cellular maturation of dendritic cell line DC2.4 leading to induction of efficient cytotoxic T cell responses and antitumor immunity. Cell Mol Immunol 4:105–111

    CAS  PubMed  Google Scholar 

  • Hirahashi T, Matsumoto M, Hazeki K et al (2002) Activation of the human innate immune system by Spirulina: augmentation of interferon production and NK cytotoxicity by oral administration of hot water extract of Spirulina platensis. Int Immunopharmacol 2:423–434

    Article  CAS  PubMed  Google Scholar 

  • Iiyama T, Udaka K, Takeda S et al (2007) WT1 (Wilms’ tumor 1) peptide immunotherapy for renal cell carcinoma. Microbiol Immunol 51:519–530

    Article  CAS  PubMed  Google Scholar 

  • Inoue K, Ogawa H, Sonoda Y et al (1994a) Aberrant overexpression of the Wilms’ tumor gene (WT1) in human leukemia. Blood 89:1405–1412

    Google Scholar 

  • Inoue K, Sugiyama H, Ogawa H et al (1994b) WT1 as a new prognostic factor and a new marker for the detection of minimal residual disease in acute leukemia. Blood 84:3071–3079

    CAS  PubMed  Google Scholar 

  • Inoue K, Tamaki H, Ogawa H et al (1998) Wilms’ tumor gene (WT1) competes with differentiation-inducing signal in hematopoietic progenitor cells. Blood 91:2969–2976

    CAS  PubMed  Google Scholar 

  • Ishii K, Kurita-Taniguchi M, Aoki M et al (2005) Gene-inducing program of human dendritic cells in response to BCG cell-wall skeleton (CWS), which reflects adjuvancy required for tumor immunotherapy. Immunol Lett 98:280–390

    Article  CAS  PubMed  Google Scholar 

  • Izumoto S, Tsuboi A, Oka Y et al (2008) Phase II clinical trial of Wilms tumor 1 peptide vaccination for patients with recurrent glioblastoma multiforme. J Neurosurg 108:963–971

    Article  CAS  PubMed  Google Scholar 

  • Kawakami M, Oka Y, Tsuboi A et al (2007) Clinical and immunologic responses to very low-dose vaccination with WT1 peptide (5 μg/body) in a patient with chronic myelomonocytic leukemia. Int J Hematol 85:426–429

    Article  CAS  PubMed  Google Scholar 

  • Kayagaki N, Yamaguchi N, Nakayama M et al (1999) Type I interferons (IFNs) regulate tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) expression on human T cells: a novel mechanism for the antitumor effects of type I IFNs. J Exp Med 189:1451–1460

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kirkwood JM, Richards T, Zarour HM et al (2002) Immunomodulatory effects of high-dose and low-dose interferon α2b in patients with high-risk resected melanoma: the E2690 laboratory corollary of intergroup adjuvant trial E1690. Cancer 95:1101–1112

    Article  CAS  PubMed  Google Scholar 

  • Lamm DL, Blumenstein BA, Crawford ED et al (1991) A randomized trial of intravesical doxorubicin and immunotherapy with bacille Calmette-Guérin for transitional-cell carcinoma of the bladder. N Engl J Med 325:1205–1209

    Article  CAS  PubMed  Google Scholar 

  • Lipton A, Harvey HA, Lawrence B et al (1983) Corynebacterium parvum versus BCG adjuvant immunotherapy in human malignant melanoma. Cancer 51:57–61

    Article  CAS  PubMed  Google Scholar 

  • Lipton A, Harvey HA, Balch CM et al (1991) Corynebacterium parvum versus Bacille Calmette-Guérin adjuvant immunotherapy of stage II malignant melanoma. J Clin Oncol 9:1551–1556

    Google Scholar 

  • Loeb DM, Evron E, Patel CB et al (2001) Wilms’ tumor suppressor gene (WT1) is expressed in primary breast tumors despite tumor-specific promotor methylation. Cancer Res 61:921–925

    CAS  PubMed  Google Scholar 

  • Mani S, Todd M, Poo WJ (1996) Recombinant beta-interferon in the treatment of patients with metastatic renal cell carcinoma. Am J Clin Oncol 19:187–189

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto M, Seya T, Kikkawa S et al (2001) IFN γ-producing ability in blood lymphocytes of patients with lung cancer through activation of the innate immune system by BCG cell wall skeleton. Int Immunopharmacol 1:1559–1569

    Article  CAS  PubMed  Google Scholar 

  • Menke AL, Van der Eb AJ, Jochemsen AG (1998) The Wilms’ tumor 1 gene: oncogene or tumor suppressor gene? Int Rev Cytol 181:151–212

    Article  CAS  PubMed  Google Scholar 

  • Menssen HD, Renkl HJ, Rodeck U et al (1995) Presence of Wilms’ tumor gene (WT1) transcripts and the WT1 nuclear protein in the majority of human acute leukemias. Leukemia 9:1060–1067

    CAS  PubMed  Google Scholar 

  • Miwa H, Beran M, Saunders GF (1992) Expression of the Wilms’ tumor gene (WT1) in human leukemias. Leukemia 6:405–409

    CAS  PubMed  Google Scholar 

  • Morita S, Oka Y, Tsuboi A et al (2004) A phase I/II trial of a WT1 (Wilms’ tumor gene) peptide vaccine in patients with solid malignancy: safety assessment based on the phase I data. Jpn J Clin Oncol 36:231–236

    Article  Google Scholar 

  • Muzio M, Polentarutti N, Bosisio D et al (2000) Toll-like receptor family and signalling pathway. Biochem Soc Trans 28:563–5666

    CAS  PubMed  Google Scholar 

  • Nakajima H, Kawasaki K, Oka Y et al (2004) WT1 peptide vaccination combined with BCG-CWS is more efficient for tumor eradication than WT1 peptide vaccination alone. Cancer Immunol Immunother 53:617–624

    Article  CAS  PubMed  Google Scholar 

  • Nakajima H, Oka Y, Tsuboi A et al (2012) Enhanced tumor immunity of WT1 peptide vaccination by interferon-β administration. Vaccine 30:722–729

    Article  CAS  PubMed  Google Scholar 

  • Ochiai T, Sato H, Hayashi R et al (1983) Postoperative adjuvant immunotherapy of gastric cancer with BCG-cell wall skeleton. 3- to 6-year follow up of a randomized clinical trial. Cancer Immunol Immunother 14:167–171

    Article  CAS  PubMed  Google Scholar 

  • Ogawa H, Tamaki H, Ikegame K et al (2003) The usefulness of monitoring WT1 gene transcripts for the prediction and management of relapse following allogeneic stem cell transplantation in acute type leukemia. Blood 101:1698–1704

    Article  CAS  PubMed  Google Scholar 

  • Ohminami H, Yasukawa M, Fujita S (2000) HLA class I-restricted lysis of leukemia cells by a CD8+ cytotoxic T-lymphocyte clone specific for WT1 peptide. Blood 95:286–293

    CAS  PubMed  Google Scholar 

  • Ohno R, Ueda R, Imai K et al (1978) A clinical trial of cell-wall skeleton of BCG in chemoimmunotherapy of acute leukemia. Jpn J Cancer Res (Gann) 69:179–186

    Google Scholar 

  • Ohta H, Hashii Y, Yoneda A et al (2009) WT1 (Wilms tumor 1) peptide immunotherapy for childhood rhabdomyosarcoma: a case report. Pediatr Hematol Oncol 26:74–83

    Article  CAS  PubMed  Google Scholar 

  • Oji Y, Ogawa H, Tamaki H et al (1999) Expression of the Wilms’ tumor gene WT1 in solid tumors and its involvement in tumor cell growth. Jpn J Cancer Res 90:194–204

    Article  CAS  PubMed  Google Scholar 

  • Oji Y, Miyoshi S, Maeda H et al (2002) Overexpression of the Wilms’ tumor gene WT1 in de novo lung cancers. Int J Cancer 100:297–303

    Article  CAS  PubMed  Google Scholar 

  • Oji Y, Yamamoto H, Nomura M et al (2003) Overexpression of the Wilms’ tumor gene WT1 in colorectal adenocarcinoma. Cancer Sci 94:712–717

    Article  CAS  PubMed  Google Scholar 

  • Oji Y, Suzuki T, Nakano Y et al (2004) Overexpression of the Wilms’ tumor gene W T1 in primary astrocytic tumors. Cancer Sci 95:822–827

    Article  CAS  PubMed  Google Scholar 

  • Oji Y, Kitamura Y, Kamino E et al (2009) WT1 IgG antibody for early detection of nonsmall cell lung cancer and as its prognostic factor. Int J Cancer 125:381–387

    Google Scholar 

  • Oka Y, Sugiyama H (2010) WT1 peptide vaccine, one of the most promising cancer vaccines: its present status and the future prospects. Immunotherapy 2:591–594

    Article  CAS  PubMed  Google Scholar 

  • Oka Y, Elisseeva OA, Tsuboi A et al (2000a) Human cytotoxic T-lymphocyte response specific for peptides of the wild-type Wilms’ tumor gene (WT1) product. Immunogenetics 51:99–107

    Article  CAS  PubMed  Google Scholar 

  • Oka Y, Udaka K, Tsuboi A et al (2000b) Cancer immunotherapy targeting Wilms’ tumor gene WT1 product. J Immunol 164:1873–1880

    Article  CAS  PubMed  Google Scholar 

  • Oka Y, Tsuboi A, Murakami M et al (2003) Wilms tumor gene peptide-based immunotherapy for patients with overt leukemia from myelodysplastic syndrome (MDS) or MDS with myelofibrosis. Int J Hematol 78:56–61

    Article  CAS  PubMed  Google Scholar 

  • Oka Y, Tsuboi A, Taguchi T et al (2004) Induction of WT1 (Wilms’ tumor gene)-specific cytotoxic T lymphocytes by WT1 peptide vaccine and the resultant cancer regression. Proc Natl Acad Sci U S A 101:13885–13890

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Oka Y, Tsuboi A, Kawakami M et al (2006) Development of WT1 peptide cancer vaccine against hematopoietic malignancies and solid cancers. Curr Med Chem 13:2345–2352

    Article  CAS  PubMed  Google Scholar 

  • Oka Y, Tsuboi A, Elisseeva OA et al (2007) WT1 peptide cancer vaccine for patients with hematopoietic malignancies and solid cancers. ScientificWorldJournal 7:649–665

    Article  CAS  PubMed  Google Scholar 

  • Oka Y, Tsuboi A, Oji Y et al (2008a) WT1 peptide vaccine for the treatment of cancer. Curr Opin Immunol 20:211–220

    Article  CAS  PubMed  Google Scholar 

  • Oka Y, Tsuboi A, Fujiki F et al (2008b) “Cancer antigen WT1 protein-derived peptide”-based treatment of cancer -toward the further development. Curr Med Chem 15:3052–3061

    Article  CAS  PubMed  Google Scholar 

  • Oka Y, Tsuboi A, Fujiki F et al (2009) WT1 peptide vaccine as a paradigm for “cancer antigen-derived peptide”-based immunotherapy for malignancies: successful induction of anti-cancer effect by vaccination with a single kind of WT1 peptide. Anticancer Agents Med Chem 9:787–797

    Article  CAS  PubMed  Google Scholar 

  • Okamoto M, Sato M (2003) Toll-like receptor signaling in anti-cancer immunity. J Med Invest 50:9–24

    PubMed  Google Scholar 

  • Saito Y, Kitamura H, Hijikata A et al (2010) Identification of therapeutic targets for quiescent, chemotherapy-resistant human leukemia stemcells. Sci Transl Med 2:17ra9

    Article  PubMed Central  PubMed  Google Scholar 

  • Sato K, Hida S, Takayanagi H et al (2001) Response by natural killer cells through TRAIL gene induction by IFN-α/β. Eur J Immunol 31:3138–3146

    Article  CAS  PubMed  Google Scholar 

  • Seya T, Begum NA, Nomura M (2000) Innate immune therapy for cancer. Screen for molecules capable of activating the innate immune system. Adv Exp Med Biol 465:229–237

    Article  CAS  PubMed  Google Scholar 

  • Seya T, Matsumoto M, Tsuji S et al (2001) Two receptor theory in innate immune activation: studies on the receptors for bacillus Culmet Guillen-cell wall skeleton. Arch Immunol Ther Exp (Warsz) 49(Suppl 1):S13–S21

    CAS  Google Scholar 

  • Streck CJ, Zhang Y, Miyamoto R et al (2004) Restriction of neuroblastoma angiogenesis and growth by interferon-α/β. Surgery 136:183–189

    Article  PubMed  Google Scholar 

  • Sugiyama H (2001) Wilms’ tumor gene WT1: its oncogenic function and clinical application. Int J Hematol 73:177–187

    Article  CAS  PubMed  Google Scholar 

  • Sugiyama H (2002) Cancer immunotherapy targeting WT1 protein. Int J Hematol 76:127–132

    Article  CAS  PubMed  Google Scholar 

  • Sugiyama H (2005) Cancer immunotherapy targeting Wilms’ tumor gene WT1 product. Expert Rev Vaccines 4:503–512

    Article  CAS  PubMed  Google Scholar 

  • Sugiyama H (2010) WT1 (Wilms’ tumor gene 1): biology and cancer immunotherapy. Jpn J Clin Oncol 40:377–387

    Article  PubMed  Google Scholar 

  • Tanabe T, Kominsky SL, Subramaniam PS et al (2000) Inhibition of the glioblastoma cell cycle by type I IFNs occurs at both the G1 and S phases and correlates with the upregulation of p21 (WAF1/CIP1). J Neurooncol 48:225–232

    Article  CAS  PubMed  Google Scholar 

  • Thurnher M, Ramoner R, Gastl G et al (1997) Bacillus Calmette-Guérin mycobacteria stimulate human blood dendritic cells. Int J Cancer 70:128–134

    Article  CAS  PubMed  Google Scholar 

  • Tsuboi A, Oka Y, Ogawa H et al (1999) Constitutive expression of the Wilms’ tumor gene WT1 inhibits the differentiation of myeloid progenitor cells but promotes their proliferation in response to granulocyte-colony stimulating factor (G-CSF). Leuk Res 23:499–505

    Article  CAS  PubMed  Google Scholar 

  • Tsuboi A, Oka Y, Ogawa H et al (2000) Cytotoxic T-lymphocyte responses elicited to Wilms’ tumor gene WT1 product by DNA vaccination. J Clin Immunol 20:195–202

    Article  CAS  PubMed  Google Scholar 

  • Tsuboi A, Oka Y, Osaki T et al (2004) WT1 peptide based immunotherapy for patients with lung cancer: report of two cases. Microbiol Immunol 48:175–184

    Article  CAS  PubMed  Google Scholar 

  • Tsuboi A, Oka Y, Nakajima H et al (2007) Wilms tumor gene WT1 peptide-based immunotherapy induced a minimal response in a patient with advanced therapy-resistant multiple myeloma. Int J Hematol 86:414–417

    Article  PubMed  Google Scholar 

  • Tsuboi A, Oka Y, Kyo T et al (2012) Long-term WT1 peptide vaccination for patients with acute myeloid leukemia with minimal residual disease. Leukemia 26:1410–1413

    Article  CAS  PubMed  Google Scholar 

  • Tsuji S, Matsumoto M, Takeuchi O et al (2000) Maturation of human dendritic cells by cell wall skeleton of Mycobacterium bovis bacillus Calmette-Guérin: involvement of toll-like receptors. Infect Immun 68:6883–6890

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Uehori J, Matsumoto M, Tsuji S et al (2003) Simultaneous blocking of human Toll-like receptors 2 and 4 suppresses myeloid dendritic cell activation induced by Mycobacterium bovis bacillus Calmette-Guérin peptidoglycan. Infect Immun 71:4238–4249

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Underhill DM, Ozinsky A, Smith KD (1998) Toll-like receptor-2 mediates mycobacteria-induced proinflammatory signaling in macrophages. Proc Natl Acad Sci U S A 96:14459–14463

    Article  Google Scholar 

  • Veronesi U, Adamus J, Aubert C et al (1982) A randomized trial of adjuvant chemotherapy and immunotherapy in cutaneous melanoma. N Engl J Med 307:913–916

    Article  CAS  PubMed  Google Scholar 

  • Wakita D, Chamoto K, Zhang Y et al (2006) An indispensable role of type-1 IFNs for inducing CTL-mediated complete eradication of established tumor tissue by CpG-liposome co-encapsulated with model tumor antigen. Int Immunol 18:425–434

    Article  CAS  PubMed  Google Scholar 

  • Watanabe T, Katayama Y, Yoshino A et al (2005) Human interferon beta, nimustine hydrochloride, and radiation therapy in the treatment of newly diagnosed malignant astrocytomas. J Neurooncol 72:57–62

    Article  CAS  PubMed  Google Scholar 

  • Wu F, Oka Y, Tsuboi A et al (2005) Th1-biased humoral immune responses against Wilms tumor gene WT1 product in the patients with hematopoietic malignancies. Leukemia 19:268–274

    Google Scholar 

  • Yamagami T, Sugiyama H, Inoue K et al (1996) Growth inhibition of human leukemic cells by WT1 (Wilms tumor gene) antisense oligodeoxynucleotides: implications for the involvement of WT1 in leukemogenesis. Blood 87:2878–2884

    CAS  PubMed  Google Scholar 

  • Yamamura Y, Sakatani M, Ogura T et al (1979) Adjuvant immunotherapy of lung cancer with BCG cell wall skeleton (BCG-CWS). Cancer 43:1314–1319

    Article  CAS  PubMed  Google Scholar 

  • Yasumoto K, Manabe H, Yanagawa E et al (1979) Nonspecific adjuvant immunotherapy of lung cancer with cell wall skeleton of Mycobacterium bovis Bacillus Calmette-Guérin. Cancer Res 39:3262–3267

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroko Nakajima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Nakajima, H. et al. (2015). Enhancement of Efficacy of Wilms’ Tumor Gene WT1 Product-derived Peptide Cancer Vaccine by Co-administration with Immunopotentiating Agents: Lessons from Mouse Models. In: Seya, T., Matsumoto, M., Udaka, K., Sato, N. (eds) Inflammation and Immunity in Cancer. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55327-4_14

Download citation

Publish with us

Policies and ethics