Theoretical Issues in Cognitive Workload and Fatigue

  • Stephen J. Guastello
Part of the Evolutionary Economics and Social Complexity Science book series (EESCS, volume 13)


This chapter presents the elementary concepts of stress and then focuses to the more specific issues of cognitive workload and fatigue and their role in the nonlinear dynamical systems theory that is the central concern for this book. The roles of working memory and individual differences in cognitive processes are outlined. The chapter culminates in a pair of cusp catastrophe models for cognitive workload and fatigue. The models feature prominent constructs of elasticity versus rigidity in the context of workload and compensatory abilities in the context of fatigue. Previous research on the pair of models is summarized, and the models are adapted with new provisions for basic optimizing and risk taking decisions that are part of many economically relevant decisions.


Executive Function Emotional Intelligence Work Memory Capacity Five Factor Model Fluid Intelligence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abbott, A., Button, C., Pepping, G.-J., & Collins, D. (2005). Unnatural selection: Talent identification and development in sport. Nonlinear Dynamics, Psychology, and Life Sciences, 9, 61–88.Google Scholar
  2. Ackerman, P. L. (Ed.). (2011). Cognitive fatigue. Washington, DC: American Psychological Association.Google Scholar
  3. Alves, E. E., & Kelsey, C. M. (2010). Combating vigilance decrement in a single-operator radar platform. Ergonomics in Design, 18(2), 6–9.CrossRefGoogle Scholar
  4. Andreadis, N., & Quinlan, P. T. (2010). Task switching under predictable and unpredictable circumstances. Attention, Perception, and Psychophysics, 72, 1776–1790.CrossRefGoogle Scholar
  5. Ariga, A., & Lleras, A. (2011). Brief and rare mental “breaks” keep you focused: Deactivation and reactivation of task goals preempt vigilance decrements. Cognition, 118, 439–443.CrossRefGoogle Scholar
  6. Baddeley, A. (2003). Working memory: Looking back and looking forward. Nature Reviews Neuroscience, 4, 829–839.CrossRefGoogle Scholar
  7. Barron, F. (1955). The disposition toward originality. The Journal of Abnormal and Social Psychology, 51, 478–485.CrossRefGoogle Scholar
  8. Buchholz, R. A. (1977). The belief structure of managers relative to work concepts measured by a factor analytic model. Personnel Psychology, 30, 567–587.CrossRefGoogle Scholar
  9. Cattell, R. B., Eber, H. W., & Tatsuoka, M. M. (1970). Handbook for the sixteen personality factor questionnaire. Champaign: Institute for Personality and Ability Testing.Google Scholar
  10. Conrad, R. (1951). Speed and load stress in a sensorimotor skill. British Journal of Industrial Medicine, 8, 1–7.Google Scholar
  11. Conway, A. R. A., Kane, M. J., Bunting, M. F., Hambrick, D. Z., & Engle, R. W. (2005). Working memory span tasks: A methodological review and user’s guide. Psychonomic Bulletin & Review, 12, 769–786.CrossRefGoogle Scholar
  12. Dillard, M. B., Warm, J. S., Funke, G. J., Funke, M. E., Finomore, V. S., Matthews, G., Shaw, T. H., & Parasuraman, R. (2014). The sustained attention to response task (SART) does not promote mindlessness during vigilance performance. Human Factors, 56, 1364–1379.CrossRefGoogle Scholar
  13. Dudley, N. M., Orvis, K. A., Lebiecki, J. E., & Cortina, J. M. (2006). A meta-analytic investigation of conscientiousness in the prediction of job performance: Examining the intercorrelations and the incremental validity of narrow traits. Journal of Applied Psychology, 91, 40–57.CrossRefGoogle Scholar
  14. Ein-Dor, T., Mikulincer, M., Doron, G., & Shaver, P. R. (2010). The attachment paradox: How can so many of us (the insecure ones) have no adaptive advantages. Perspectives on Psychological Science, 5, 123–141.CrossRefGoogle Scholar
  15. Eysenck, M. W. (1997). Anxiety and cognition: A unified theory. New York: Psychology Press/Taylor & Francis.Google Scholar
  16. Finucane, M. L., Alhakami, A., Slovic, P., & Johnson, S. M. (2000). The affect heuristic in judgments of risks and benefits. Journal of Behavioral Decision Making, 13, 1–17.CrossRefGoogle Scholar
  17. Fraser-Mackenzie, P. A. F., & Dror, I. E. (2011). Dynamic reasoning and time pressure: Transition from analytical operations to experiential responses. Theory and Decision, 71, 211–225.CrossRefGoogle Scholar
  18. Friston, K. (2010). The free-energy principle: A unified brain theory? Nature Reviews Neuroscience, 11(2), 127–138.CrossRefGoogle Scholar
  19. Funke, G. J., Knott, B. A., Salas, E., Pavlas, D., & Strang, A. J. (2012). Conceptualization and measurement of team workload: A critical need. Human Factors, 54, 36–51.CrossRefGoogle Scholar
  20. Furnham, A. (1990). A content, correlational, and factor analytic study of seven questionnaire measures of the Protestant work ethic. Human Relations, 43, 383–399.CrossRefGoogle Scholar
  21. Gibson, J. J. (1979). The ecological approach to visual perception. Boston: Houghton Mifflin.Google Scholar
  22. Gilmore, R. (1981). Catastrophe theory for scientists and engineers. New York: Wiley.Google Scholar
  23. Greenberg, J. (1977). The Protestant work ethic and reactions to negative performance evaluations on a laboratory task. Journal of Applied Psychology, 62, 682–690.CrossRefGoogle Scholar
  24. Guastello, S. J. (1985). Euler buckling in a wheelbarrow obstacle course: A catastrophe with complex lag. Behavioral Science, 30, 204–212.CrossRefGoogle Scholar
  25. Guastello, S. J. (1995). Chaos, catastrophe, and human affairs: Applications of nonlinear dynamics to work, organizations, and social evolution. Hillsdale: Lawrence Erlbaum Associates.Google Scholar
  26. Guastello, S. J. (2003). Nonlinear dynamics, complex systems, and occupational accidents. Human Factors and Ergonomics in Manufacturing & Service Industries, 13, 293–304.CrossRefGoogle Scholar
  27. Guastello, S. J. (2005). Statistical distributions in self-organizing phenomena: What conclusions should be drawn? Nonlinear Dynamics, Psychology, and Life Sciences, 9, 463–478.Google Scholar
  28. Guastello, S. J. (2013). Catastrophe theory and its applications to I/O psychology. In J. M. Cortina & R. Landis (Eds.), Frontiers of methodology in organizational research (pp. 29–62). New York: Routledge.Google Scholar
  29. Guastello, S. J. (2014). Human factors engineering and ergonomics: A systems approach (2nd ed.). Boca Raton: CRC Press.Google Scholar
  30. Guastello, S. J., & Gregson, R. A. M. (Eds.). (2011). Nonlinear dynamical systems analysis for the behavioral sciences using real data. Boca Raton: CRC Press.Google Scholar
  31. Guastello, S. J., & Liebovitch, L. S. (2009). Introduction to nonlinear dynamics and complexity. In S. J. Guastello, M. Koopmans, & D. Pincus (Eds.), Chaos and complexity in psychology: Theory of nonlinear dynamical systems (pp. 1–40). New York: Cambridge University Press.Google Scholar
  32. Guastello, S. J., & Lynn, M. (2014). Catastrophe model of the accident process, safety climate, and anxiety. Nonlinear Dynamics, Psychology, and Life Sciences, 18, 177–198.Google Scholar
  33. Guastello, S. J., & McGee, D. W. (1987). Mathematical modeling of fatigue in physically demanding jobs. Journal of Mathematical Psychology, 31, 248–269.CrossRefGoogle Scholar
  34. Guastello, S. J., Boeh, H., Shumaker, C., & Schimmels, M. (2012a). Catastrophe models for cognitive workload and fatigue. Theoretical Issues in Ergonomics Science, 13, 586–602.CrossRefGoogle Scholar
  35. Guastello, S. J., Boeh, H., Schimmels, M., Gorin, H., Huschen, S., Davis, E., Peters, N. E., Fabisch, M., & Poston, K. (2012b). Cusp catastrophe models for cognitive workload and fatigue in a verbally-cued pictorial memory task. Human Factors, 54, 811–825.CrossRefGoogle Scholar
  36. Guastello, S. J., Boeh, H., Gorin, H., Huschen, S., Peters, N. E., Fabisch, M., & Poston, K. (2013a). Cusp catastrophe models for cognitive workload and fatigue: A comparison of seven task types. Nonlinear Dynamics, Psychology, and Life Sciences, 17, 23–47.Google Scholar
  37. Guastello, S. J., Gorin, H., Huschen, S., Peters, N. E., Fabisch, M., Poston, K., & Weinberger, K. (2013b). The minimum entropy principle and task performance. Nonlinear Dynamics, Psychology, and Life Sciences, 17, 405–424.Google Scholar
  38. Guastello, A. D., Guastello, S. J., & Guastello, D. D. (2014a). Personality trait theory and multitasking performance: Implications for ergonomic design. Theoretical Issues in Ergonomics Science, 15, 432–450. doi: 10.1080/1463922X.2012.762063.CrossRefGoogle Scholar
  39. Guastello, S. J., Malon, M., Timm, P., Weinberger, K., Gorin, H., Fabisch, M., & Poston, K. (2014b). Catastrophe models for cognitive workload and fatigue in a vigilance dual-task. Human Factors, 56, 737–751.CrossRefGoogle Scholar
  40. Guastello, S. J., Reiter, K., Shircel, A., Timm, P., Malon, M., & Fabisch, M. (2014c). The performance-variability paradox, financial decision making, and the curious case of negative Hurst exponents. Nonlinear Dynamics, Psychology, and Life Sciences, 18, 297–328.Google Scholar
  41. Guastello, S. J., Reiter, K., Malon, M., Timm, P., Shircel, A., & Shaline, J. (2015a). Catastrophe models for cognitive workload and fatigue in N-back tasks. Nonlinear Dynamics, Psychology, and Life Sciences, 19, 173–200.Google Scholar
  42. Guastello, S. J., Shircel, A., Malon, M., & Timm, P. (2015b). Individual differences in the experience of cognitive workload. Theoretical Issues in Ergonomics Science, 16, 20–52.CrossRefGoogle Scholar
  43. Haken, H. (1988). Information and self-organization: A macroscopic approach to complex systems. New York: Springer.CrossRefGoogle Scholar
  44. Hakstian, A. R., & Cattell, R. B. (1978). Higher-stratum ability structures on a basis of twenty primary abilities. Journal of Educational Psychology, 70, 657–669.CrossRefGoogle Scholar
  45. Hancock, P. A. (1996). Effects of control order, augmented feedback, input device and practice on tracking performance and perceived workload. Ergonomics, 39, 1146–1162.CrossRefGoogle Scholar
  46. Hancock, P. A. (2013). In search of vigilance: The problem of iatrogenically created psychological phenomena. American Psychologist, 68, 97–109.CrossRefGoogle Scholar
  47. Hancock, P. A. (2014). Finding vigilance through complex explanations for complex phenomena. American Psychologist, 69, 86–88.CrossRefGoogle Scholar
  48. Hancock, P. A., & Desmond, P. A. (Eds.). (2001). Stress, workload, and fatigue. Mahwah: Lawrence Erlbaum Associates.Google Scholar
  49. Hancock, P. A., & Warm, J. S. (1989). A dynamic model of stress and sustained attention. Human Factors, 31, 519–537.Google Scholar
  50. Hart, S. G., & Staveland, L. E. (1988). Development of the NASA task load index (TLX): Results of experimental and theoretical research. In P. A. Hancock & N. Meshkati (Eds.), Human workload (pp. 138–183). Amsterdam: North-Holland.Google Scholar
  51. Helton, W. S., & Russell, P. N. (2011). Working memory load and the vigilance decrement. Experimental Brain Research, 212, 429–437.CrossRefGoogle Scholar
  52. Helton, W. S., & Russell, P. N. (2013). Visuospatial and verbal working memory load: Effects on visuospatial vigilance. Experimental Brain Research, 224, 429–436.CrossRefGoogle Scholar
  53. Helton, W. S., & Russell, P. N. (2015). Rest is best: The role of rest and task interruptions on vigilance. Cognition, 134, 165–173.CrossRefGoogle Scholar
  54. Hollis, G., Kloos, H., & Van Orden, G. C. (2009). Origins of order in cognitive activity. In S. J. Guastello, M. Koopmans, & D. Pincus (Eds.), Chaos and complexity in psychology: The theory of nonlinear dynamical systems (pp. 206–242). New York: Cambridge University Press.Google Scholar
  55. Hollnagel, E. (2011). The score of resilience engineering. In E. Hollnagel, J. Paries, D. D. Woods, & J. Wreathall (Eds.), Resilience engineering in practice: A guidebook (pp. xxix–xxxix). Burlington: Ashgate.Google Scholar
  56. Hollnagel, E., Woods, D. D., & Leveson, N. (Eds.). (2006). Resilience engineering. Burlington: Ashgate.Google Scholar
  57. Holmes, T. H., & Rahe, R. H. (1967). The social readjustment rating scale. Journal of Psychosomatic Research, 11, 213–218.CrossRefGoogle Scholar
  58. Hong, S. L. (2010). The entropy conservation principle: Applications in ergonomics and human factors. Nonlinear Dynamics, Psychology, and Life Sciences, 14, 291–315.Google Scholar
  59. Hristovski, R., Davids, K., & Araujo, D. (2006). Affordance-controlled bifurcations of action patterns in martial arts. Nonlinear Dynamics, Psychology, and Life Sciences, 10, 409–444.Google Scholar
  60. Hristovski, R., Davids, K., Araujo, D., & Passos, P. (2011). Constraints-induced emergence of functional novelty in complex neurobiological systems: A basis for creativity in sport. Nonlinear Dynamics, Psychology, and Life Sciences, 15, 175–206.Google Scholar
  61. Hunton, J. E., McEwen, R. A., & Bhattacharjee, S. (2001). Toward an understanding of the risk choice behavior of professional financial analysts. The Journal of Psychology and Financial Markets, 2, 182–189.CrossRefGoogle Scholar
  62. Ioteyko, J. (1920). La fatigue [Fatigue] (2nd ed.). Paris: Flammarion.Google Scholar
  63. Joseph, D. L., & Newman, D. A. (2010). Emotional intelligence: An integrative meta-analysis and cascading model. Journal of Applied Psychology, 95, 54–78.CrossRefGoogle Scholar
  64. Kane, M. J., & Engle, R. W. (2002). The role of prefrontal cortex in working-memory capacity, executive attention, and general fluid intelligence: An individual-differences perspective. Psychonomic Bulletin & Review, 9, 617–671.CrossRefGoogle Scholar
  65. Kane, M. J., Hambrick, D. Z., & Conway, A. R. A. (2005). Working memory capacity and fluid intelligence are strongly related constructs: Comment on Ackerman, Beier, and Boyle (2005). Psychological Bulletin, 131, 66–71.CrossRefGoogle Scholar
  66. Kantowitz, B., & Sorkin, D. (1983). Human factors: Understanding people-system relationships. New York: Wiley.Google Scholar
  67. Kozhenikov, M., Evans, C., & Kosslyn, S. M. (2014). Cognitive style as environmentally sensitive individual differences in cognition: A modern synthesis and applications in education, business, and management. Psychological Science in the Public Interest, 15, 1–33.Google Scholar
  68. Ladoucer, C. D., Silk, J. S., Dahl, R. E., Ostapenko, L., Kronhaus, D. M., & Phillips, M. L. (2009). Fearful faces influence attentional control processes in anxious youth and adults. Emotion, 9, 855–864.CrossRefGoogle Scholar
  69. Leary, M. R., & Kowalski, R. M. (1995). Social anxiety. New York: Guilford Press.Google Scholar
  70. Lehman, H. H., & Gavurin, E. I. (1975). Relationship of anagram solving to measures of divergent-production and letter rearrangement ability. Journal of General Psychology, 92, 231–236.CrossRefGoogle Scholar
  71. Leonhardt, J., Macchi, L., Hollnagel, E., & Kirwan, B. (2009). A white paper on resilience engineering for ATM. Eurocontrol. Retrieved March 9, 2011, from
  72. Loft, S., Sanderson, P., Neal, A., & Mooij, M. (2007). Modeling and predicting mental workload in en route air traffic control: Critical review and broader implications. Human Factors, 49, 376–399.CrossRefGoogle Scholar
  73. Logie, R. H. (2011). The functional organization and capacity limits of working memory. Current Directions in Psychological Science, 20, 240–245.CrossRefGoogle Scholar
  74. Lorist, M. M., & Faber, L. G. (2011). Consideration of the influence of mental fatigue on controlled and automatic cognitive processes. In P. Ackerman (Ed.), Cognitive fatigue (pp. 105–126). Washington, DC: American Psychological Association.Google Scholar
  75. Lorist, M. M., Klein, M., Nieuwenhaus, S., De Jong, R., Mulder, G., & Meijman, T. F. (2000). Mental fatigue and task control: Planning and preparation. Psychophysiology, 37, 614–625.CrossRefGoogle Scholar
  76. MacLean, M. H., & Arnell, K. M. (2010). Personality predicts temporal attention costs in the attentional blink paradigm. Psychonomic Bulletin & Review, 17, 556–562.CrossRefGoogle Scholar
  77. Matthews, G., Warm, J. S., Reinerman, L. E., Lengheim, L. K., & Saxby, D. J. (2010). Task engagement, attention, and executive control. In A. Gruszka, G. Matthews, & B. Szymura (Eds.), Handbook of individual differences in cognition (pp. 205–230). New York: Springer.CrossRefGoogle Scholar
  78. Matthews, G., Desmond, P. A., Neubauer, C., & Hancock, P. A. (Eds.). (2012). The handbook of operator fatigue. Burlington: Ashgate.Google Scholar
  79. Matthews, G., Reinerman-Jones, L. E., Barber, D. J., & Abich, J., IV. (2015). The psychometrics of mental workload: Multiples measures are sensitive but divergent. Human Factors, 57, 125–143.CrossRefGoogle Scholar
  80. Mayer, J. D. (2001). A field guide to emotional intelligence. In J. Ciarrochi, J. P. Forgas, & J. D. Mayer (Eds.), Emotional intelligence in everyday life: A scientific inquiry (pp. 3–24). Philadelphia: Taylor & Francis.Google Scholar
  81. Mayer, J. D., & Salovey, P. (1997). What is emotional intelligence? In P. Salovey & D. Sluyter (Eds.), Emotional development and emotional intelligence: Educational implications (pp. 3–34). New York: Basic Books.Google Scholar
  82. Mayer-Kress, G., Newell, K. M., & Liu, Y.-T. (2009). Nonlinear dynamics of motor learning. Nonlinear Dynamics, Psychology, and Life Sciences, 13, 3–26.Google Scholar
  83. McCrae, R. R., & Costa, P. T., Jr. (1985). Updating Norman’s “adequate taxonomy:” Intelligence and personality dimensions in natural language questionnaires. Journal of Personality and Social Psychology, 49, 710–721.CrossRefGoogle Scholar
  84. Mendelsohn, G. A., & Griswold, B. B. (1964). Differential use of incidental stimuli in problem solving as a function of creativity. The Journal of Abnormal and Social Psychology, 68, 431–436.CrossRefGoogle Scholar
  85. Meyer, R. D., Dalal, R. S., & Bonaccio, S. (2009). A meta-analytic investigation into the moderating effects of situational strength on the conscientiousness-performance relationship. Journal of Organizational Behavior, 30, 1077–1102.CrossRefGoogle Scholar
  86. Mykytyn, P. P., Jr. (1989). Group embedded figures test (GEFT): Individual differences, performance, and learning effects. Educational and Psychological Measurement, 49, 951–959.CrossRefGoogle Scholar
  87. Naber, A. M., McDonald, J. N., Asenuga, O. A., & Arthur, W., Jr. (2015). Team members’ interaction anxiety and team training effectiveness: A catastrophic relationship? Human Factors, 57, 163–176.CrossRefGoogle Scholar
  88. Nusbaum, E. C., & Silvia, P. J. (2011). Are intelligence and creativity really so different? Fluid intelligence, executive processes, and strategy use in divergent thinking. Intelligence, 39, 36–45.CrossRefGoogle Scholar
  89. Oberauer, K., & Kleigel, R. (2006). A formal model of capacity limits in working memory. Journal of Memory and Language, 55, 601–626.CrossRefGoogle Scholar
  90. Oron-Gilad, T., Szalma, J. L., Stafford, S. C., & Hancock, P. A. (2008). The workload and performance relationship in the real world: A study of police officers in a field shooting exercise. International Journal of Occupational Safety and Ergonomics, 14, 119–131.CrossRefGoogle Scholar
  91. Parasuraman, R., & Davies, D. R. (1976). Decision theory analysis of response latencies in vigilance. Journal of Experimental Psychology: Human Perception and Performance, 2, 578–590.Google Scholar
  92. Pascual-Leone, J. (1970). A mathematical model for the transition rule in Piaget’s developmental stages. Acta Psychologica, 32, 301–345.CrossRefGoogle Scholar
  93. Pincus, D., & Metten, A. (2010). Nonlinear dynamics in biopsychosocial resilience. Nonlinear Dynamics, Psychology, and Life Sciences, 14, 353–380.Google Scholar
  94. Porcelli, A. J., & Delgado, M. R. (2009). Acute stress modulates risk taking in financial decisions. Psychological Science, 20, 278–283.CrossRefGoogle Scholar
  95. Quick, J. C., & Quick, J. D. (1984). Organizational stress and preventive management. New York: McGraw-Hill.Google Scholar
  96. Rubinstein, J. S., Meyer, D. E., & Evans, J. E. (2001). Executive control of cognitive processes in task switching. Journal of Experimental Psychology: Human Perception and Performance, 27, 763–797.Google Scholar
  97. Schmorrow, D. D., & Stanney, K. M. (2008). Augmented cognition: A practitioner’s guide. Santa Monica: Human Factors and Ergonomics Society.Google Scholar
  98. Schutte, N. S., Malouf, J. M., Hall, L. E., Haggerty, D. J., Cooper, J. T., Golden, C. J., & Dornheirn, L. (1998). Development and validation of a measure of emotional intelligence. Personality and Individual Differences, 25, 167–177.CrossRefGoogle Scholar
  99. Selye, H. (1976). The stress of life (2nd ed.). New York: McGraw-Hill.Google Scholar
  100. Sheridan, T. B. (2008). Risk, human error, and system resilience: Fundamental ideas. Human Factors, 50, 418–426.CrossRefGoogle Scholar
  101. Slovic, P., & Peters, E. (2006). Risk perception and affect. Current Directions in Psychological Science, 15, 322–325.CrossRefGoogle Scholar
  102. Stamovlasis, D. (2006). The nonlinear dynamical hypothesis in science education problem solving: A catastrophe theory approach. Nonlinear Dynamics, Psychology and Life Science, 10, 37–70.Google Scholar
  103. Stamovlasis, D. (2011). Nonlinear dynamics and neo-Piagetian theories in problem solving: Perspectives on a new epistemology and theory development. Nonlinear Dynamics, Psychology and Life Science, 15, 145–173.Google Scholar
  104. Stamovlasis, D., & Tsaparlis, G. (2012). Applying catastrophe theory to an information-processing model of problem solving in science education. Science Education, 96, 392–410.CrossRefGoogle Scholar
  105. Stergiou, N., Harbourne, R. T., & Cavanaugh, J. T. (2006). Optimal movement variability: A new theoretical perspective for neurologic physical therapy. Journal of Neurologic Physical Therapy, 30, 120–129.CrossRefGoogle Scholar
  106. Stillman, T. F., Baumeister, R. F., Vohs, K. D., Lambert, N. M., Fincham, F. D., & Brewer, L. E. (2010). Personal philosophy and personnel achievement: Belief in free will predicts better job performance. Social Psychological and Personality Science, 1, 43–50.CrossRefGoogle Scholar
  107. Szymura, B. (2010). Individual differences in resource allocation policy. In A. Gruszka, G. Matthews, & B. Szymura (Eds.), Handbook of individual differences in cognition: Attention, memory, and executive control (pp. 231–246). New York: Springer.CrossRefGoogle Scholar
  108. Thom, R. (1975). Structural stability and morphogenesis. New York: Addison-Wesley.Google Scholar
  109. Thompson, H. L. (2010). The stress effect: Why smart leaders make dumb decisions – and what to do about it. San Francisco: Jossey-Bass.Google Scholar
  110. Thomson, D. R., Besnder, D., & Smilek, D. (2015). A resource-control account of sustained attention: Evidence from mind-wandering and vigilance paradigms. Perspectives on Psychological Science, 10, 82–96.CrossRefGoogle Scholar
  111. Turvey, M. T. (1990). Coordination. American Psychologist, 45, 938–953.CrossRefGoogle Scholar
  112. Vytal, K., Cornwell, B., Arkin, N., & Grillon, C. (2012). Describing the interplay between anxiety and cognition: From impaired performance under low cognitive load to reduced anxiety under high load. Psychophysiology, 49, 842–852.CrossRefGoogle Scholar
  113. Warm, J. S., & Jerison, H. J. (1984). The psychophysics of vigilance. In J. S. Warm (Ed.), Sustained attention in human performance (pp. 15–57). New York: Wiley.Google Scholar
  114. Warm, J. S., Finomore, V. S., Vidulich, M. A., & Funke, M. E. (2015). Vigilance: A perceptual challenge. In R. R. Hoffman, P. A. Hancock, J. L. Szalma, & R. Parasuraman (Eds.), Handbook of applied perception. New York: Cambridge University Press.Google Scholar
  115. Wickens, C. D. (2002). Multiple resources and performance prediction. Theoretical Issues in Ergonomics Science, 3, 159–177.CrossRefGoogle Scholar
  116. Wickens, C. D. (2008). Multiple resources and mental workload. Human Factors, 50, 449–455.CrossRefGoogle Scholar
  117. Witkin, H. A., Oltman, P. K., Raskin, E., & Karp, S. A. (1971). A manual for the embedded figures test. Palo Alto: Consulting Psychologists Press.Google Scholar
  118. Woods, D. D., & Wreathall, J. (2008). Stress–strain plots as a basis for assessing system resilience. In E. Hollnagel, C. P. Nemeth, & S. W. A. Dekker (Eds.), Resilience engineering: Remaining sensitive to the possibility of failure (pp. 143–158). Aldershot: Ashgate.Google Scholar
  119. Yeh, Y. Y., & Wickens, C. D. (1988). Association of performance and subjective measures of workload. Human Factors, 30, 111–120.Google Scholar
  120. Yerkes, R. M., & Dodson, J. D. (1908). The relationship of strength of stimulus to rapidity of habit formation. Journal of Comparative Neurology and Psychology, 18, 459–482.CrossRefGoogle Scholar
  121. Zeeman, E. C. (1977). Catastrophe theory: Selected papers, 1972–1977. Reading: Addison-Wesley.Google Scholar
  122. Zwerling, C., Daltroy, L. H., Fine, L. J., Johnston, J. J., Melius, J., & Silverstein, B. A. (1997). Design and conduct of occupational injury intervention studies: A review of evaluation strategies. American Journal of Industrial Medicine, 32, 164–179.CrossRefGoogle Scholar

Copyright information

© Springer Japan 2016

Authors and Affiliations

  1. 1.Marquette UniversityMilwaukeeUSA

Personalised recommendations