Skip to main content

Energy and Supercritical Fluids

  • Chapter
  • First Online:
Book cover Topical Themes in Energy and Resources
  • 766 Accesses

Abstract

Global energy demand is expected to increase from 12.4 gigatons oil equivalent (Gtoe) in 2010 to 16.7 Gtoe by 2035. Energy systems will need to be redesigned or rethought to achieve the high efficiencies required to meet such energy demands. Energy systems that take advantage of the favorable thermo-physical properties of supercritical fluids can help raise efficiency and this chapter introduces several applications of energy systems that use supercritical fluids. These include (i) transcritical cycles for heating (ii) cryogenic exergy recovery for liquefied natural gas transport, (iii) geothermal and waste heat energy, (iv) refrigeration, (v) ultra-supercritical steam generators, (vi) biofuel synthesis, (vii) hydrothermal conversion of biomass and (viii) solvo-thermal processing of biomass with ionic liquids. Supercritical fluids offer unique technological advantages in their use for energy systems and increase cycle efficiencies and simplify chemical processing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Angelino, G., and C. Invernizzi. 2009. Carbon dioxide power cycles using liquid natural gas as heat sink. Applied Thermal Engineering 29:2935–2941.

    Article  Google Scholar 

  • Anthony, J., E. Maginn, and J. Brennecke. 2001. Solution thermodynamics of imidazolium-based ionic liquids and water. Journal of Physical Chemistry B 105:10942–10949.

    Article  Google Scholar 

  • Arai, K., R. L. Smith Jr., and T. Aida. 2009. Decentralized chemical processes with supercritical fluid technology for sustainable society. Journal of Supercritical Fluids 47:628–636.

    Article  Google Scholar 

  • Brennecke, J., L. Blanchard, J. Anthony, Z. Gu, I. Zarraga, and D. Leighton. 2002. Separation of species from ionic liquids. Clean Solvents 819:82–96.

    Article  Google Scholar 

  • Fang, Z., R. L. Smith Jr., and X. Qi, eds. 2014. Production of biofuels and chemicals with ionic liquids. Volume 1 in Biofuels and Biorefineries Series, Springer, Dordrecht.

    Google Scholar 

  • Fort, D., R. Remsing, R. Swatloski, P. Moyna, G. Moyna, and R. Rogers. 2007. Can ionic liquids dissolve wood? Processing and analysis of lignocellulosic materials with 1-n-butyl-3-methylimidazolium chloride. Green Chemistry 9:63–69.

    Article  Google Scholar 

  • Guo, F., Z. Fang, C. Xu, and R. L. Smith Jr. 2012a. Solid acid mediated hydrolysis of biomass for producing biofuels. Progress in Energy and Combustion Science 38:672–690.

    Google Scholar 

  • Guo, F., Z. Fang, C. Xu, and R. L. Smith Jr. 2012. Corrigendum to “Solid acid mediated hydrolysis of biomass for producing biofuels”. Progress in Energy and Combustion Science:672–690.

    Google Scholar 

  • IEA. 2014. World energy outlook. www.iea.org. Accessed 1 Feb 2014.

  • Ilham, Z., and S. Saka. 2009. Dimethyl carbonate as potential reactant in non-catalytic biodiesel production by supercritical method. Bioresource Technology 100:1793–1796.

    Article  Google Scholar 

  • Ishikawa, Y., and S. Saka. 2001. Chemical conversion of cellulose as treated in supercritical methanol. Cellulose 8:189–195.

    Article  Google Scholar 

  • Lemus, J., C. Neves, C. Marques, M. Freire, J. Coutinho, and J. Palomar. 2013a. Composition and structural effects on the adsorption of ionic liquids onto activated carbon. Environmental Sciences: Processes and Impacts 15:1752–1759.

    Google Scholar 

  • Lemus, J., J. Palomar, M. Gilarranz, and J. Rodriguez. 2013b. On the kinetics of ionic liquid adsorption onto activated carbons from aqueous solution. Industrial and Engineering Chemistry Research 52:2969–2976.

    Google Scholar 

  • Machida, H., M. Takesue, and R. L. Smith Jr. 2011. Green chemical processes with supercritical fluids: Properties, materials, separations and energy. Journal of Supercritical Fluids 60:2–15.

    Article  Google Scholar 

  • Minami, E., and S. Saka. 2006. Kinetics of hydrolysis and methyl esterification for biodiesel production in two-step supercritical methanol process. Fuel 85:2479–2483.

    Article  Google Scholar 

  • Qi, X., L. Li, T. Tan, W. Chen, and R. L. Smith Jr. 2013. Adsorption of 1-butyl-3-methylimidazolium chloride ionic liquid by functional carbon microspheres from hydrothermal carbonization of cellulose. Environmental Science and Technology 47:2792–2798.

    Article  Google Scholar 

  • Saka, S., and Y. Isayama. 2009. A new process for catalyst-free production of biodiesel using supercritical methyl acetate. Fuel 88:1307–1313.

    Article  Google Scholar 

  • Smith Jr., R. L., H. Inomata, and C. Peters. 2013. Introduction to supercritical fluids: A spreadsheet-based approach. Volume 4 in the Supercritical Fluid Science and Technology Series (E. Kiran, ed.), Elsevier Science, Amsterdam.

    Google Scholar 

  • Sasaki, M., T. Adschiri, and K. Arai. 2003. Fractionation of sugarcane bagasse by hydrothermal treatment. Bioresource Technology 86:301–304.

    Article  Google Scholar 

  • Smith Jr., R. L., H. Inomata, and C. Peters. 2013. Introduction to supercritical fluids: A spreadsheet-based approach. Volume 4 in the Supercritical Fluid Science and Technology Series (E. Kiran, ed.), Elsevier Science, Amsterdam.

    Google Scholar 

  • Swatloski, R., S. Spear, J. Holbrey, and R. Rogers. 2002. Dissolution of cellose with ionic liquids. Journal of the American Chemical Society 124:4974–4975.

    Article  Google Scholar 

  • You, C., H. Chen, D. Myung, N. Sathitsuksanoh, H. Ma, X. Z. Zhang, J. Li, and Y.H. Zhang. 2013. Enzymatic transformation of nonfood biomass to starch. Proceedings of the National Academy of Sciences U S A 110:7182–7187.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard L. Smith Jr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Smith, R. (2015). Energy and Supercritical Fluids. In: Tanaka, Y., Norton, M., Li, YY. (eds) Topical Themes in Energy and Resources. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55309-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55309-0_5

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55308-3

  • Online ISBN: 978-4-431-55309-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics