Skip to main content

Time Series Analysis Through AR Modeling

  • Chapter
  • First Online:
Time Series Modeling for Analysis and Control

Part of the book series: SpringerBriefs in Statistics ((JSSRES))

Abstract

The features of dynamic phenomena can be described using time series models. In this chapter, we present various types of autoregressive models for the analysis of time series, such as univariate and multivariate autoregressive models, an autoregressive model with exogenous variables, a locally stationary autoregressive model, and a radial basis function autoregressive model. Various tools for analyzing dynamic systems such as the impulse response function, the power spectrum, the characteristic roots, and the power contribution are obtained through these models (Akaike and Nakagawa 1989; Kitagawa 2010).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akaike, H.: On the use of a linear model for the identification of feedback systems. Ann. Inst. Stat. Math. 20, 425–439 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  • Akaike, H.: Autoregressive model fitting for control. Ann. Inst. Stat. Math. 23, 163–180 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  • Akaike, H.: A new look at the statistical model identification. IEEE Trans. Autom. Control AC-19, 716–723 (1974)

    Google Scholar 

  • Akaike, H.: Information theory and an extension of the maximum likelihood principle. In: Parzen, E., Tanabe, K., Kitagawa, G. (eds.) Selected Papers of Hirotugu Akaike, pp. 199–213. Springer, New York (1998)

    Chapter  Google Scholar 

  • Akaike, H., Nakagawa, T.: Statistical Analysis and control of Dynamic System. Kluwer, Tokyo (1988)

    Google Scholar 

  • Akaike, H., Nakagawa, T.: Statistical Analysis and control of Dynamic System. KTK Scientific Publishers, Tokyo (1989)

    Google Scholar 

  • Akaike, H., Kitagawa, G., Arahata, E., Tada, F.: TIMSAC-78, The Inst. Stat. Math. (1979)

    Google Scholar 

  • Anderson, B.D.O., Moore, J.B.: Optimal Filtering. Premtics Hall, New Jersey (1979)

    Google Scholar 

  • Anderson, B.D.O., Moore, J.B.: Optimal Filtering. Courier Dover Publications, Mineola (2012)

    Google Scholar 

  • Bronshtein, I.N., Semendyayev, K.A.: Handbook of Mathematics. Springer, Berlin (1998)

    Book  Google Scholar 

  • Chen, S., Cowan, C.F.N., Grant, P.M.: Orthogonal least squares learning algorithm for radial basis function networks. IEEE Trans. Neural Netw. 2, 302–309 (1991)

    Article  Google Scholar 

  • Chen, S., Tsay, R.S.: Functional-coefficient autoregressive models. J. Am. Stat. Assoc. 88, 298–308 (1993)

    MATH  MathSciNet  Google Scholar 

  • Coleman, T., Branch, M.A., Grace, A.: Optimization Toolbox User’s Guide. The MathWorks Inc., Natick (1999)

    Google Scholar 

  • Coleman, T.F., Li, Y.: An interior trust region approach for nonlinear minimization subject to bounds. SIAM J. Optim. 6, 418–445 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  • Doucet, A., De Freitas, N., Gordon, N. (eds.): Sequential Monte Carlo Methods in Practice. Springer, New York (2001)

    MATH  Google Scholar 

  • Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. The Johns Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  • Gorinevsky, D.: An approach to parametric nonlinear least square optimization and application to task-level learning control. IEEE Trans. Autom. Control 42–7, 912–927 (1997)

    Article  MathSciNet  Google Scholar 

  • Gorinevsky, D., Torfs, D.E., Goldenberg, A.A.: Learning approximation of feedforward control dependence on the task parameters with application to direct-drive manipulator tracking. IEEE Trans. Robot. Autom. 13–4, 567–581 (1997)

    Article  Google Scholar 

  • Kalman, R.E.: A new approach to linear filtering and prediction problems. Trans. Am. Soc. Mech. Eng. J. Basic Eng. 82, 35–45 (1960)

    Article  Google Scholar 

  • Kitagawa, G.: Non-Gaussian state-space modeling of nonstationary time series. J. Am. Stat. Assoc. 82–400, 1032–1041 (1987)

    MathSciNet  Google Scholar 

  • Kitagawa, G.: Monte Carlo filter and smoother for non-Gaussian nonlinear state space models. J. Comput. Graph. Stat. 5(1), 1–25 (1996)

    MathSciNet  Google Scholar 

  • Kitagawa, G.: Introduction to Time Series Modeling. CRC press (2010)

    Google Scholar 

  • Kitagawa, G., Akaike, H.: (1978): A procedure for the modeling of nonstationary time series. Ann. Inst. Stat. Math. 30–B, 215–363 (1978)

    Google Scholar 

  • Kitagawa, G., Gersch, W.: Smoothness Priors Analysis of Time Series, vol. 116. Springer, New York (1996)

    Book  Google Scholar 

  • Konishi, S., Kitagawa, G.: Information Criteria and Statistical Modeling. Springer, New York (2008)

    Book  MATH  Google Scholar 

  • Ljung, L.: System Identification: Theory for the User, 2nd edn. Prentice Hall PTR, New Jersey (1999)

    Google Scholar 

  • Marquardt, D.: An algorithm for least-squares estimation of nonlinear parameters. SIAM J. Appl. Math. 11, 431–441 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  • McLoone, S., Irwin, G.: Fast parallel off-line training of multilayer perceptrons. IEEE Trans. Neural Netw. 8, 646–653 (1997)

    Article  Google Scholar 

  • McLoone, S., Brown, M.D., Irwin, G., Lightbody, G.: A hybrid linear/nonlinear training algorithm for feedforward neural networks. IEEE Trans. Neural Netw. 9(4), 669–684 (1998)

    Google Scholar 

  • Moody, J., Darken, C.: Fast learning in networks of locally-tuned processing units. Neural Comput. 1, 281–294 (1989)

    Article  Google Scholar 

  • Ohtsu, K.: Statistical analysis and control of ship. In: 8th IFAC Symposium of MCMC, Brazil (2009)

    Google Scholar 

  • Ohtsu, K.: Model based on monitoring system and the optimal control (in Japanese), Kaibundou (2012)

    Google Scholar 

  • Ozaki, T., Sosa, P.V., Haggan-Ozaki, V.: Reconstructing the nonlinear dynamics of epilepsy data using nonlinear time series analysis. J Signal Process. 3–3, 153–162 (1999)

    Google Scholar 

  • Ozaki, T., Tong, H.: On the fitting of non-stationary autoregressive models in time series analysis. In: Proceedings of 8th Hawaii International Conference on System Science, Western Periodical Company, pp. 224–226 (1975)

    Google Scholar 

  • Ozaki, T., Tong, H.: On the fitting of non-stationary autoregressive models in time series analysis. In: Proceedings of 8th Hawaii International Conference on System Science, Western Periodical Company, pp. 224–226 (1979)

    Google Scholar 

  • Peng, H., Ozaki, T., Haggan-Ozaki, V., Toyoda, Y.: A parameter optimization method for the radial basis function type models. IEEE Trans. Neural Netw. 14, 432–438 (2003)

    Article  Google Scholar 

  • Peng, H., Ozaki, T., Toyoda, Y., Shioya, H., Nakano, K., Haggan-Ozaki, V., Mori, M.: RBF-ARX model based nonlinear system modeling and predictive control with application to a NOx decomposition process. Control Eng. Pract. 12, 191–203 (2004)

    Article  Google Scholar 

  • Peng, H., Wu, J., Inoussa, G., Deng, Q., Nakano, K.: Nonlinear system modeling and predictive control using RBF nets-based quasi-linear ARX model. Control Eng. Pract. 17, 59–66 (2009)

    Article  Google Scholar 

  • Priestley, M.B.: State dependent models: a general approach to nonlinear time series analysis. J. Time Ser. Anal. 1, 57–71 (1980)

    Article  MathSciNet  Google Scholar 

  • Sakamoto, Y., Ishiguro, M., Kitagawa, G.: Akaike Information Criterion Statistics. D. Reidel, Dordrecht (1986)

    MATH  Google Scholar 

  • Shi, Z., Tamura, Y., Ozaki, T.: Nonlinear time series modelling with the radial basis function-based state-dependent autoregressive model. Int. J. Syst. Sci. 30, 717–727 (1999)

    Article  MATH  Google Scholar 

  • Takanami, T., Kitagawa, G.: Estimation of the arrivaltimes of seismic waves by multivariate time series model. Ann. Inst. Statist. Math. 43, 407–433 (1991)

    Google Scholar 

  • Tanokura, Y., Kitagawa, G.: Power contribution analysis for multivariate time series with correlated noise sources. Adv. Appl. Stat. 4, 65–95 (2004)

    MATH  MathSciNet  Google Scholar 

  • Tanokura, Y., Kitagawa, G.: Modeling influential correlated noise sources in multivariate dynamic systems. In: Modelling and Simulation: Fifteenth IASTED International Conference Proceedings (2004)

    Google Scholar 

  • Tanokura, Y., Tsuda, H., Sato, S., Kitagawa, G.: Constructing a credit default swap index and detecting the impact of the financial crisis. In: Bell, W.R., Holan, S.H., McElroy, T.S. (eds.) Economic Time Series: Modeling and Seasonality, pp. 359–380. CRC Press, Boca Raton (2012)

    Chapter  Google Scholar 

  • Vesin, J.: An amplitude-dependent autoregressive signal model based on a radial basis function expansion. In: Proceedings of the International Conference ASSP 3 Minnesota, pp. 129–132 (1993)

    Google Scholar 

  • Whittle, P.: On the fitting of multivariable autoregressions and the approximate canonical factorization of a spectral density matrix. Biometrika 50, 129–134 (1963)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kohei Ohtsu .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Ohtsu, K., Peng, H., Kitagawa, G. (2015). Time Series Analysis Through AR Modeling. In: Time Series Modeling for Analysis and Control. SpringerBriefs in Statistics(). Springer, Tokyo. https://doi.org/10.1007/978-4-431-55303-8_2

Download citation

Publish with us

Policies and ethics