Skip to main content

Bethe Vectors of gl(3)-Invariant Integrable Models, Their Scalar Products and Form Factors

  • Conference paper
  • First Online:
Lie Theory and Its Applications in Physics

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 111))

  • 960 Accesses

Abstract

This short note corresponds to a talk given at Lie Theory and Its Applications in Physics (Varna, Bulgaria, June 2013) and is based on joint works with S. Belliard, S. Pakuliak and N. Slavnov, see arXiv:1206.4931, arXiv:1207.0956,  arXiv:1210.0768, arXiv:1211.3968 and arXiv:1312.1488.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The same ideas can be applied for a general spin chain, using an adapted basis.

References

  1. Faddeev, L.D., Sklyanin, E.K., Takhtajan, L.A.: Quantum inverse problem. I. Theor. Math. Phys. 40, 688–706 (1979); Faddeev, L.D. Takhtajan, L.A.: The quantum method of the inverse problem and the Heisenberg XYZ model. Usp. Math. Nauk 34, 13 (1979); Russian Math. Surveys 34, 11 (1979) (Engl. transl.)

    Google Scholar 

  2. Korepin, V.E., Bogoliubov, N.M., Izergin, A.G.: Quantum Inverse Scattering Method and Correlation Functions. Cambridge University Press, Cambridge (1993)

    Google Scholar 

  3. Faddeev, L.D.: In: Connes, A., et al. (eds.) Les Houches Lectures Quantum Symmetries, p. 149. North Holland, Amsterdam (1998)

    Google Scholar 

  4. Kulish, P.P., Reshetikhin, N.Y.: Diagonalization of GL(N) invariant transfer matrices and quantum N-wave system (Lee model). J. Phys. A 16, L591–L596 (1983)

    Google Scholar 

  5. Tarasov, V., Varchenko, A.: Combinatorial formulae for nested Bethe vector. SIGMA 9, 048 (2013). arXiv:math.QA/0702277

    Google Scholar 

  6. Belliard, S., Ragoucy, E.: The nested Bethe ansatz for ‘all’ closed spin chains. J. Phys. A41, 295202 (2008). arXiv:0804.2822v2

    Google Scholar 

  7. Belliard, S., Pakuliak, S., Ragoucy, E., Slavnov, N.A.: Bethe vectors of GL(3)-invariant integrable models. J. Stat. Mech. 1302, P02020 (2013). arXiv:1210.0768

    Google Scholar 

  8. Izergin, A.G.: Partition function of the six-vertex model in a finite volume. Dokl. Akad. Nauk SSSR 297, 331–333 (1987); Sov. Phys. Dokl. 32, 878–879 (1987) (Engl. transl.)

    Google Scholar 

  9. Korepin, V.E.: Calculation of norms of Bethe wave functions. Commun. Math. Phys. 86, 391–418 (1982); Izergin, A.G., Korepin, V.E.: The quantum inverse scattering method approach to correlation functions. Commun. Math. Phys. 94, 67–92 (1984)

    Google Scholar 

  10. Maillet, J.M., Terras, V.: On the quantum inverse scattering problem. Nucl. Phys. B575, 627–644 (2000). hep-th/9911030

    Google Scholar 

  11. Reshetikhin, N.Y.: Calculation of the norm of Bethe vectors in models with SU(3)-symmetry. Zap. Nauchn. Sem. LOMI 150, 196–213 (1986); J. Math. Sci. 46, 1694–1706 (1989) (Engl. transl.)

    Google Scholar 

  12. Slavnov, N.: Calculation of scalar products of wave functions and form factors in the framework of the algebraic Bethe ansatz. Teor. Mat. Fiz. 79(2), 232 (1989); Theor. Math. Phys. 79, 502 (1989) (Engl. transl.)

    Google Scholar 

  13. Wheeler, M.: Scalar products in generalized models with SU(3)-symmetry. Commun. Math. Phys. 327 737–777 (2014) arXiv:1204.2089

    Google Scholar 

  14. Belliard, S., Pakuliak, S., Ragoucy, E., Slavnov, N.A.: The algebraic Bethe ansatz for scalar products in SU(3)-invariant integrable models. J. Stat. Mech. 1210, P10017 (2012). arXiv:1207.0956

    Google Scholar 

  15. Belliard, S., Pakuliak, S., Ragoucy, E., Slavnov, N.A.: Highest coefficient of scalar products in SU(3)-invariant models. J. Stat. Mech. 1209, P09003 (2012). arXiv:1206.4931

    Google Scholar 

  16. Wheeler, M.: Multiple integral formulae for the scalar product of on-shell and off-shell Bethe vectors in SU(3)-invariant models. Nucl. Phys. B 875, 186–212 (2013). arXiv:1306.0552

    Google Scholar 

  17. Belliard, S., Pakuliak, S., Ragoucy, E., Slavnov, N.A.: Form factors in SU(3)-invariant integrable models. J. Stat. Mech. 1309, P04033 (2013). arXiv:1211.3968

    Google Scholar 

  18. Pakuliak, S., Ragoucy, E., Slavnov, N.A.: Form factors in quantum integrable models with GL(3)-invariant R-matrix. Nucl. Phys. B881 343-368 (2014) arXiv:1312.1488

    Google Scholar 

  19. Belliard, S., Pakuliak, S., Ragoucy, E., Slavnov, N.A.: Bethe vectors of quantum integrable models with GL(3) trigonometric R-matrix. SIGMA 9, 058 (2013). arXiv:1304.7602

    Google Scholar 

  20. Pakuliak, S., Ragoucy, E., Slavnov, N.A.: Scalar products in models with GL(3) trigonometric R-matrix. Highest coefficient. Theor. Math. Phys. 178, 314 (2014). arXiv:1311.3500

    Google Scholar 

  21. Pakuliak, S., Ragoucy, E., Slavnov, N.A.: Scalar products in models with \(\mathfrak{g}\mathfrak{l}_{3}\) trigonometric R-matrix. General case. Theor. Math. Phys. 180 795–814 (2014) arXiv:1401.4355

    Google Scholar 

  22. Enriquez, B., Khoroshkin, S., Pakuliak, S.: Weight functions and Drinfeld currents. Commun. Math. Phys. 276, 691–725 (2007). arXiv:math/0610398; Khoroshkin, S., Pakuliak, S.: Weight function for \(\mathcal{U}_{q}(\widehat{\mathfrak{s}\mathfrak{l}}_{3})\). Theor. Math. Phys. 145, 1373–1399 (2005). arXiv:math/0610433; Khoroshkin, S., Pakuliak, S.: A computation of an universal weight function for the quantum affine algebra \(\mathcal{U}_{q}(\mathfrak{g}\mathfrak{l}_{N})\). J. Math. Kyoto Univ. 48, 277–321 (2008). arXiv:0711.2819; Os’kin, A., Pakuliak, S., Silantyev, A.: On the universal weight function for the quantum affine algebra \(\mathcal{U}_{q}(\mathfrak{g}\mathfrak{l}_{N})\). Algebra Anal. 21, 196–240 (2009). arXiv:0711.2821; Frappat, L., Khoroshkin, S., Pakuliak, S., Ragoucy, E.: Bethe ansatz for the universal weight function. Ann. H. Poincaré, 10, 513 (2009). arXiv:0810.3135; Belliard, S., Pakuliak, S., Ragoucy, E.: Bethe Ansatz and Bethe vectors scalar products. SIGMA 6, 094 (2010). arXiv:1012.1455

    Google Scholar 

  23. Pakuliak, S., Ragoucy, E., Slavnov, N.A.: Bethe vectors of quantum integrable models based on \(\mathcal{U}_{q}(\mathfrak{g}\mathfrak{l}_{N})\). J. Phys. A47, 105202 (2014). arXiv:1310.3253

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Ragoucy .

Editor information

Editors and Affiliations

Appendices

Appendix 1: The Matrix \(\mathcal{N}\)

Diagonal blocks

$$\displaystyle\begin{array}{rcl} \mathcal{N}^{(u)}(u_{ j}^{C },u_{k}^{B })& =& h(\bar{v}^{C },u_{k}^{B })h(u_{k}^{B },\bar{u}^{C })\Big[\kappa t(u_{k}^{B },u_{j}^{C }) {}\\ & & +t(u_{j}^{C },u_{k}^{B })\frac{f(\bar{v}^{B},u_{ k}^{B})} {f(\bar{v}^{C},u_{k}^{B})} \frac{h(\bar{u}^{C},u_{ k}^{B})h(u_{ k}^{B},\bar{u}^{B})} {h(u_{k}^{B},\bar{u}^{C})h(\bar{u}^{B},u_{k}^{B})}\Big]\quad \mbox{ $a \times a$ block}{}\\ \end{array}$$
$$\displaystyle\begin{array}{rcl} \mathcal{N}^{(v)}(v_{ j}^{B },v_{k}^{C })& =& h(v_{k}^{C },\bar{u}^{B })h(\bar{v}^{B },v_{k}^{C })\Big[t(v_{j}^{B },v_{k}^{C }) {}\\ & & +\kappa t(v_{k}^{C },v_{j}^{B })\frac{f(v_{k}^{C},\bar{u}^{C})} {f(v_{k}^{C},\bar{u}^{B})} \frac{h(\bar{v}^{C},v_{ k}^{C})h(v_{ k}^{C},\bar{v}^{B})} {h(v_{k}^{C},\bar{v}^{C})h(\bar{v}^{B},v_{k}^{C})}\Big]\quad \mbox{ $b \times b$ block} {}\\ \end{array}$$

Off-diagonal blocks

$$\displaystyle\begin{array}{rcl} \mathcal{N}^{(u)}(u_{ j}^{C },v_{k}^{C })& =& \kappa t(v_{k}^{C },u_{j}^{C })h(v_{k}^{C },\bar{u}^{C })h(\bar{v}^{C },v_{k}^{C })\quad \mbox{ $a \times b$ block} {}\\ \mathcal{N}^{(v)}(v_{ j}^{B },u_{k}^{B })& =& t(v_{j}^{B },u_{k}^{B })h(\bar{v}^{B },u_{k}^{B })h(u_{k}^{B },\bar{u}^{B })\qquad \mbox{ $b \times a$ block} {}\\ \end{array}$$

Appendix 2: The Matrix Θ (s)

First of all we define an (a + b) × (a + b) matrix θ with the entries

$$\displaystyle\begin{array}{rcl} & & \theta _{j,k} = \left. \frac{\partial \varPhi _{j}} {\partial u_{k}^{C}}\right \vert _{{ \bar{u}^{C}=\bar{u} \atop \bar{v}^{C}=\bar{v}} },\qquad k = 1,\ldots,a, \\ & & \theta _{j,k+a} = \left. \frac{\partial \varPhi _{j}} {\partial v_{k}^{C}}\right \vert _{{ \bar{u}^{C}=\bar{u} \atop \bar{v}^{C}=\bar{v}} },\qquad k = 1,\ldots,b,{}\end{array}$$
(43)

where the Φ j are given by (36) and (37).

Then we extend the matrix θ to an \((a + b + 1) \times (a + b + 1)\) matrix Θ (s) with s = 1, 2, 3, by adding one row and one column

$$\displaystyle \begin{array}{llll} &\varTheta _{j,k}^{(s)} =\theta _{ j,k},\quad \qquad \qquad \qquad j,k = 1,\ldots,a + b, \\ &\varTheta _{a+b+1,k}^{(s)} = \frac{\partial \tau (z\vert \bar{u},\bar{v})} {\partial u_{k}},\qquad k = 1,\ldots,a, \\ &\varTheta _{a+b+1,a+k}^{(s)} = \frac{\partial \tau (z\vert \bar{u},\bar{v})} {\partial v_{k}},\qquad k = 1,\ldots,b, \\ &\varTheta _{j,a+b+1}^{(s)} =\delta _{ s1} -\delta _{s2}\qquad \quad j = 1,\ldots,a, \\ &\varTheta _{j+a,a+b+1}^{(s)} =\delta _{ s3} -\delta _{s2}\qquad \quad j = 1,\ldots,b, \\ &\varTheta _{a+b+1,a+b+1}^{(s)} = \left.\frac{\partial \tau _{\bar{\kappa }}(z\vert \bar{u}^{C},\bar{v}^{C})} {\partial \kappa _{s}} \right \vert _{{ \bar{u}^{C}=\bar{u} \atop \bar{v}^{C}=\bar{v}} }. \end{array} $$

Here the \(\delta _{sk}\) are Kronecker deltas. Notice that Θ (s) depends on s only in its last column.

Appendix 3: The Matrix \(\mathcal{N}^{(s,p)}\)

For jp we define the entries \(\mathcal{N}_{j,k}^{(s,p)}\) of the (a + b) × (a + b) matrix \(\mathcal{N}^{(s,p)}\) as

$$\displaystyle\begin{array}{rcl} \mathcal{N}_{j,k}^{(s)}& =& c\,g^{-1}(w_{ k},\bar{u}^{C })\,g^{-1}(\bar{v}^{C },w_{k})\frac{\partial \tau (w_{k}\vert \bar{u}^{C},\bar{v}^{C})} {\partial u_{j}^{C}}, \\ & & \qquad \quad j = 1,\ldots,a,\quad j\neq p, {}\end{array}$$
(44)
$$\displaystyle\begin{array}{rcl} \mathcal{N}_{a+j,k}^{(s)}& =& -c\,g^{-1}(\bar{v}^{B },w_{k})\,g^{-1}(w_{ k},\bar{u}^{B })\frac{\partial \tau (w_{k}\vert \bar{u}^{B},\bar{v}^{B})} {\partial v_{j}^{B}},{}\end{array}$$
(45)
$$\displaystyle\begin{array}{rcl} & & \qquad j = 1,\ldots,b,\quad j\neq p. {}\\ \end{array}$$

In these formulas one should set \(w_{k} = u_{k}^{B}\) for \(k = 1,\ldots,a\) and \(w_{k+a} = v_{k}^{C}\) for \(k = 1,\ldots,b\).

The p-th row has the following elements

$$\displaystyle{ \mathcal{N}_{p,k}^{(s)} = h(\bar{v}^{C },w_{k})h(w_{k},\bar{u}^{B })Y _{k}^{(s)}, }$$
(46)

where again \(w_{k} = u_{k}^{B}\) for \(k = 1,\ldots,a\) and \(w_{k+a} = v_{k}^{C}\) for \(k = 1,\ldots,b\), and

$$\displaystyle\begin{array}{rcl} Y _{k}^{(s)}& =& c\,(\delta _{ s1} -\delta _{s2}) + (\delta _{s1} -\delta _{s3})u_{k}^{B }\left (1 -\frac{f(\bar{v}^{B},u_{ k}^{B})} {f(\bar{v}^{C},u_{k}^{B})}\right ),\qquad \qquad k = 1,\ldots,a, \\ Y _{a+k}^{(s)}& =& c\,(\delta _{ s3} -\delta _{s2}) + (\delta _{s1} -\delta _{s3})(v_{k}^{C } + c)\left (1 -\frac{f(v_{k}^{C},\bar{u}^{C})} {f(v_{k}^{C},\bar{u}^{B})}\right ), \\ & & \qquad k = 1,\ldots,b. {}\end{array}$$
(47)

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this paper

Cite this paper

Ragoucy, E. (2014). Bethe Vectors of gl(3)-Invariant Integrable Models, Their Scalar Products and Form Factors. In: Dobrev, V. (eds) Lie Theory and Its Applications in Physics. Springer Proceedings in Mathematics & Statistics, vol 111. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55285-7_9

Download citation

Publish with us

Policies and ethics