Skip to main content

Weak Poisson Structures on Infinite Dimensional Manifolds and Hamiltonian Actions

  • Conference paper
  • First Online:

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 111))

Abstract

We introduce a notion of a weak Poisson structure on a manifold M modeled on a locally convex space. This is done by specifying a Poisson bracket on a subalgebra \(\mathcal{A}\subseteq C^{\infty }(M)\) which has to satisfy a non-degeneracy condition (the differentials of elements of \(\mathcal{A}\) separate tangent vectors) and we postulate the existence of smooth Hamiltonian vector fields. Motivated by applications to Hamiltonian actions, we focus on affine Poisson spaces which include in particular the linear and affine Poisson structures on duals of locally convex Lie algebras. As an interesting byproduct of our approach, we can associate to an invariant symmetric bilinear form κ on a Lie algebra \(\mathfrak{g}\) and a κ-skew-symmetric derivation D a weak affine Poisson structure on \(\mathfrak{g}\) itself. This leads naturally to a concept of a Hamiltonian G-action on a weak Poisson manifold with a \(\mathfrak{g}\)-valued momentum map and hence to a generalization of quasi-hamiltonian group actions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    A symplectic form ω on M is called strong if, for every p ∈ M, every continuous linear functional on T p (M) is of the form ω p (v, ⋅ ) for some v ∈ T p (M).

  2. 2.

    This condition is satisfied for finite dimensional symplectic manifolds, for strongly symplectic smoothly paracompact Banach manifolds (cf. [14]) and for symplectic vector spaces.

  3. 3.

    By definition of the weak-∗-topology on \(\mathfrak{g}^{{\prime}}\), which corresponds to the subspace topology with respect to the embedding \(\mathfrak{g}^{{\prime}}\hookrightarrow \mathbb{R}^{\mathfrak{g}}\), a map \(\varphi: M \rightarrow \mathfrak{g}^{{\prime}}\) is smooth with respect to this topology if and only if all functions \(\varphi _{X}(m):=\varphi (m)(X)\) are smooth on M.

  4. 4.

    One can ask more generally, for which locally convex spaces V and which topologies on V the evaluation map \(V \times V ^{{\prime}}\rightarrow \mathbb{R}\) is continuous. This happens if and only if the topology on V can be defined by a norm, and then the operator norm turns V into a Banach space for which the evaluation map is continuous.

  5. 5.

    This is the case for so-called regular Lie groups (cf. [21]). Banach–Lie groups and in particular finite dimensional Lie groups are regular.

  6. 6.

    This concept depends on the choice of the invariant symmetric bilinear form \(\langle \cdot,\cdot \rangle\) on the Lie algebra \(\mathfrak{k}\). Changing this form leads to a different Poisson structure on \(\mathcal{L}(\mathfrak{k})\).

  7. 7.

    In [1] one finds this concept for the special case where (M, ω) is a weak symplectic manifold. In this case one requires the action σ to be symplectic and the existence of a smooth \(\mathcal{L}(K)\)-equivariant map \(\varPhi: M \rightarrow \mathcal{L}(\mathfrak{k})\) such that the functions

    $$\displaystyle{\varphi (\xi )(m):=\kappa (\varPhi (m),\xi )\quad \mbox{ satisfy }\quad i_{\xi _{\sigma }}\omega = \mathtt{d}(\varphi (\xi )).}$$

    These conditions are easily verified to be equivalent to ours (cf. Proposition 3.1).

References

  1. Alekseev, A., Malkin, A., Meinrenken, E.: Lie group valued moment maps. J. Differ. Geom. 48(3), 445–495 (1998)

    MATH  MathSciNet  Google Scholar 

  2. Beltiţă, D., Ratiu, T.S.: Symplectic leaves in real Banach Lie–Poisson spaces. Geom. Funct. Anal. 15(4), 753–779 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  3. Beltiţă, D., Ratiu, T., Tumpach, A.: The restricted Grassmannian, Banach–Lie–Poisson spaces, and coadjoint orbits. J. Funct. Anal. 247, 138–168 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  4. Colarusso, M., Lau, M.: Lie–Poisson theory for direct limit Lie algebras. Preprint. arXiv:1309.5653 [math.RT]

    Google Scholar 

  5. Gay-Balmaz, F., Ratiu, T.: Affine Lie-Poisson reduction, Yang-Mills magnetohydrodynamics, and superfluids. J. Phys. A41(34), 344007 (2008)

    MathSciNet  Google Scholar 

  6. Glöckner, H.: Direct limit Lie groups and manifolds. J. Math. Kyoto Univ. 43, 1–26 (2003)

    MATH  Google Scholar 

  7. Glöckner, H.: Fundamentals of direct limit Lie theory. Compos. Math. 141, 1551–1577 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  8. Glöckner, H.: Applications of hypocontinuous bilinear maps in infinite-dimensional differential calculus. In: Silvestrov, S., Paal, E., Abramov, V., Stolin, A. (eds.) Generalized Lie Theory in Mathematics, Physics and Beyond. Springer, Berlin (2008). arXiv:math/0701072v2 [math.FA]

    Google Scholar 

  9. Hamilton, R.: The inverse function theorem of Nash and Moser. Bull. Am. Math. Soc. 7, 65–222 (1982)

    Article  MATH  Google Scholar 

  10. Hilgert, J., Neeb, K.-H.: Structure and Geometry of Lie Groups. Springer, Berlin (2011)

    Google Scholar 

  11. Hofmann, K.H., Neeb, K.-H.: Pro-Lie groups as infinite-dimensional Lie groups. Math. Proc. Camb. Philos. Soc. 146, 351–378 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  12. Khesin, B., Wendt, R.: The Geometry of Infinite-Dimensional Groups. Springer, Berlin (2009)

    Google Scholar 

  13. Kolev, B.: Poisson brackets in hydrodynamics. Discrete Contin. Dyn. Syst. Ser. A 19(3), 555–574 (2007). arXiv:0711.1412 [math-ph]. http://hal.archives-ouvertes.fr/hal-00186392

  14. Kriegl, A., Michor, P.: The Convenient Setting of Global Analysis. Mathematical Surveys and Monographs, vol. 53. The American Mathematical Society, Providence (1997)

    Google Scholar 

  15. Lewis, D., Marsden, J., Montgomery, R., Ratiu, T.: The Hamiltonian structure for dynamic free boundary problems. Physica D 18(1–3), 391–404 (1986); Solitons and Coherent Structures, Santa Barbara, CA (1985)

    Google Scholar 

  16. Marsden, J.E.: Hamiltonian one parameter groups: a mathematical exposition of infinite dimensional Hamiltonian systems with applications in classical and quantum mechanics. Arch. Rational Mech. Anal. 28, 362–396 (1968)

    MATH  MathSciNet  Google Scholar 

  17. Marsden, J.E., Ratiu, T.S.: Introduction to Mechanics and Symmetry. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  18. Marsden, J.E., Misiolek, G., Ortega, J.-P., Perlmutter, M., Ratiu, T.S.: Hamiltonian Reduction by Stages. Lectures Notes in Mathematics, vol. 1913. Springer, Berlin (2007)

    Google Scholar 

  19. Meinrenken, E.: Lectures on pure spinors and moment maps. In: Poisson Geometry in Mathematics and Physics. Contemporary Mathematics, vol. 450, pp. 199–222. The American Mathematical Society, Providence (2008)

    Google Scholar 

  20. Neeb, K.-H.: Central extensions of infinite dimensional Lie groups. Annales de l’Inst. Fourier 52, 1365–1442 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  21. Neeb, K.-H.: Towards a Lie theory of locally convex groups. Jpn. J. Math. 3rd ser. 1(2), 291–468 (2006)

    Google Scholar 

  22. Neeb, K.-H., Vizman, C.: An abstract setting for hamiltonian actions. Monatshefte für Math. 159(3), 261–288 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  23. Odzijewicz, A., Ratiu, T.: Banach Lie–Poisson spaces and reduction. Commun. Math. Phys. 243(1), 1–54 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  24. Odzijewicz, A., Ratiu, T.: Extensions of Banach Lie–Poisson spaces. J. Funct. Anal. 217(1), 103–125 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  25. Odzijewicz, A., Ratiu, T.: Induced and coinduced Banach Lie–Poisson spaces and integrability. J. Funct. Anal. 255(5), 1225–1272 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  26. Ratiu, Tudor S.: Coadjoint orbits and the beginnings of a geometric representation theory. In: Pianzola, H., Neeb, A. (eds.) Developments and Trends in Infinite-Dimensional Lie Theory. Progress in Mathematics, vol. 288, pp. 417–457. Birkhäuser, Boston (2011)

    Chapter  Google Scholar 

  27. Schmid, R.: Infinite-Dimensional Hamiltonian Systems. Monographs and Textbooks in Physical Science, Lecture Notes, vol. 3. Bibliopolis, Naples (1987)

    Google Scholar 

  28. Waldmann, S.: Lie–Poisson theory for direct limit Lie algebras. Preprint. arXiv:1209.5551 [math.QA]

    Google Scholar 

  29. Weinstein, A.: Symplectic structures on Banach manifolds. Bull. Am. Math. Soc. 75, 1040–1041 (1969)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

We thank Helge Glöckner, Stefand Waldmann and Anton Alekseev for discussions on the subject matter of this manuscript and for pointing out references.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K.-H. Neeb .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this paper

Cite this paper

Neeb, KH., Sahlmann, H., Thiemann, T. (2014). Weak Poisson Structures on Infinite Dimensional Manifolds and Hamiltonian Actions. In: Dobrev, V. (eds) Lie Theory and Its Applications in Physics. Springer Proceedings in Mathematics & Statistics, vol 111. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55285-7_8

Download citation

Publish with us

Policies and ethics