Skip to main content

Semi-classical Scalar Products in the Generalised SU(2) Model

  • Conference paper
  • First Online:
Book cover Lie Theory and Its Applications in Physics

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 111))

Abstract

In these notes we review the field-theoretical approach to the computation of the scalar product of multi-magnon states in the Sutherland limit where the magnon rapidities condense into one or several macroscopic arrays. We formulate a systematic procedure for computing the 1∕M expansion of the on-shell/off-shell scalar product of M-magnon states in the generalised integrable model with SU(2)-invariant rational R-matrix. The coefficients of the expansion are obtained as multiple contour integrals in the rapidity plane.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This is a particular case of the Drinfeld polynomial P 1(u) [27] when all spins along the chain are equal to 1∕2.

  2. 2.

    This property is particular for the SU(2) model. The the inner product in the SU(n) model is a determinant only for a restricted class of states [29].

  3. 3.

    The case considered in [21] was that of the periodic inhomogeneous XXX1∕2 spin chain of length L, but the proof given there is trivially extended to the generalised SU(2) model.

References

  1. Gaudin, M.: La fonction d’onde de Bethe. Masson, Paris (1983)

    MATH  Google Scholar 

  2. Korepin, V.E.: Calculation of norms of Bethe wave functions. Commun. Math. Phys. 86, 391–418 (1982). doi:10.1007/BF01212176

    Article  MATH  MathSciNet  Google Scholar 

  3. Korepin, V.E.: Norm of Bethe wave function as a determinant (2009). arXiv:0911.1881

    Google Scholar 

  4. Izergin, A., Korepin, V.: The quantum inverse scattering method approach to correlation functions. Commun. Math. Phys. 94(1), 67–92 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  5. Slavnov, N.A.: Calculation of scalar products of wave functions and form factors in the framework of the algebraic Bethe ansatz. Theor. Math. Phys. 79, 502–508 (1989). doi:10.1007/BF01016531

    Article  MathSciNet  Google Scholar 

  6. Kitanine, N., Maillet, J.M., Slavnov, N.A., Terras, V.: On the algebraic Bethe Ansatz approach to the correlation functions of the XXZ spin-1/2 Heisenberg chain (2005). arXiv:hep-th/0505006

    Google Scholar 

  7. Pakuliak, S.Z., Khoroshkin, S.M.: Weight function for the quantum affine algebra \(U_{q}(\widehat{Sl(3)})\). Theor. Math. Phys. 145, 1373–1399 (2005). arXiv:math/0610433

    Google Scholar 

  8. Frappat, L., Khoroshkin, S., Pakuliak, S., Ragoucy, É.: Bethe Ansatz for the universal weight function. Annales Henri Poincaré 10, 513–548 (2009). arXiv:0810.3135

    Google Scholar 

  9. Belliard, S., Pakuliak, S., Ragoucy, E.: Universal Bethe Ansatz and scalar products of Bethe vectors. In: Symmetry, Integrability and Geometry: Methods and Applications, vol. 6, p. 94 (2010). arXiv:1012.1455

    Google Scholar 

  10. Wheeler, M.: Multiple integral formulae for the scalar product of on-shell and off-shell Bethe vectors in SU(3)-invariant models (2013). arXiv:1306.0552

    Google Scholar 

  11. Sutherland, B.: Low-lying eigenstates of the one-dimensional Heisenberg ferromagnet for any magnetization and momentum. Phys. Rev. Lett. 74, 816–819 (1995)

    Article  Google Scholar 

  12. Dhar, A., Sriram Shastry, B.: Bloch walls and macroscopic string states in Bethe’s Solution of the Heisenberg ferromagnetic linear chain. Phys. Rev. Lett. 85, 2813–2816 (2000)

    Article  Google Scholar 

  13. Beisert, N., Ahn, C., Alday, L., Bajnok, Z., Drummond, J., Freyhult, L., Gromov, N., Janik, R., Kazakov, V., Klose, T., Korchemsky, G., Kristjansen, C., Magro, M., McLoughlin, T., Minahan, J., Nepomechie, R., Rej, A., Roiban, R., Schäfer-Nameki, S., Sieg, C., Staudacher, M., Torrielli, A., Tseytlin, A., Vieira, P., Volin, D., Zoubos, K.: Review of AdS/CFT integrability: an overview. Lett. Math. Phys. 99(1–3), 3–32 (2012)

    Article  MathSciNet  Google Scholar 

  14. Beisert, N., Minahan, J.A., Staudacher, M., Zarembo, K.: Stringing spins and spinning strings. J. High Energy Phys. 09, 010 (2003). arXiv:hep-th/0306139

    Google Scholar 

  15. Kazakov, V., Marshakov, A., Minahan, J.A., Zarembo, K.: Classical/quantum integrability in AdS/CFT. J. High Energy Phys. 05, 024 (2004). arXiv:hep-th/0402207

    Google Scholar 

  16. Kostov, I.: Classical limit of the three-point function of N=4 supersymmetric Yang-Mills theory from integrability. Phys. Rev. Lett. 108, 261604 (2012). arXiv:1203.6180

    Google Scholar 

  17. Kostov, I.: Three-point function of semiclassical states at weak coupling. J. Phys. A Math. Gen. 45, 4018 (2012). arXiv:1205.4412

    Google Scholar 

  18. Escobedo, J., Gromov, N., Sever, A., Vieira, P.: Tailoring three-point functions and integrability. J. High Energy Phys. 09, 28 (2011). arXiv:1012.2475

    Google Scholar 

  19. Foda, O.: \(\mathcal{N} = 4\) SYM structure constants as determinants. J. High Energy Phys. 03, 96 (2012). arXiv:1111.4663

    Google Scholar 

  20. Jiang, Y., Kostov, I., Loebbert, F., Serban, D.: Fixing the quantum three-point function (2014). arXiv:1401.0384

    Google Scholar 

  21. Kostov, I., Matsuo, Y.: Inner products of Bethe states as partial domain wall partition functions. J. Hign Energy Phys. 10, 168 (2012). arXiv:1207.2562

    Google Scholar 

  22. Bettelheim, E., Kostov, I.: Semi-classical analysis of the inner product of Bethe states (2014). arXiv:1403.0358

    Google Scholar 

  23. Gromov, N., Sever, A., Vieira, P.: Tailoring three-point functions and integrability III. Classical tunneling (2011). arXiv:1111.2349

    Google Scholar 

  24. Takhtajan, L.A., Faddeev, L.D.: The quantum method of the inverse problem and the Heisenberg XYZ model. Russ. Math. Surv. 34, 11–68 (1979)

    Google Scholar 

  25. Faddeev, L.D., Sklyanin, E.K., Takhtajan, L.A.: The quantum inverse problem method. 1. Theor. Math. Phys. 40(2), 688–706 (1979)

    Google Scholar 

  26. Slavnov, N.A.: The algebraic Bethe ansatz and quantum integrable systems. Russ. Math. Surv. 62(4), 727 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  27. Drinfeld, V.: Elliptic modules. Matematicheskii Sbornik (Russian) 94, 400 (1974)

    MathSciNet  Google Scholar 

  28. De Vega, H.: Yang-Baxter algebras, integrable theories and quantum groups. Int. J. Mod. Phys. A4(10), 2371–2463 (1989)

    Article  Google Scholar 

  29. Wheeler, M.: Scalar products in generalized models with SU(3)-symmetry. arXiv:1204.2089 (2012)

    Google Scholar 

  30. Foda, O., Wheeler, M.: Partial domain wall partition functions. arXiv:1205.4400 (2012)

    Google Scholar 

  31. Moore, G., Nekrasov, N., Shatashvili, S.: Integrating over Higgs branches. Commun. Math. Phys. 209, 97–121 (2000). arXiv:hep-th/9712241

    Google Scholar 

  32. Moore, G.W., Nekrasov, N., Shatashvili, S.: D particle bound states and generalized instantons. Commun. Math. Phys. 209, 77–95 (2000). arXiv:hep-th/9803265

    Google Scholar 

  33. Nekrasov, N.A., Shatashvili, S.L.: Quantization of integrable systems and four dimensional gauge theories (2009). arXiv:0908.4052

    Google Scholar 

  34. Meneghelli, C., Yang, G.: Mayer-cluster expansion of instanton partition functions and thermodynamic Bethe Ansatz (2013). arXiv:1312.4537

    Google Scholar 

  35. Bourgine, J.-E.: Confinement and Mayer cluster expansions (2014). arXiv:1402.1626

    Google Scholar 

  36. Kazakov, V., Kostov, I., Nekrasov, N.A.: D-particles, matrix integrals and KP hierarchy. Nucl. Phys. B557, 413–442 (1999). arXiv:hep-th/9810035

    Google Scholar 

  37. Kazama, Y., Komatsu, S.: Three-point functions in the SU(2) sector at strong coupling (2013). arXiv:1312.3727

    Google Scholar 

  38. Zarembo, K.: Holographic three-point functions of semiclassical states. J. High Energy Phys. 09, 30 (2010). arXiv:1008.1059

    Google Scholar 

  39. Costa, M.S., Monteiro, R., Santos, J.E., Zoakos, D.: On three-point correlation functions in the gauge/gravity duality. J. High Energy Phys. 11, 141 (2010). arXiv:1008.1070

    Google Scholar 

  40. Escobedo, J., Gromov, N., Sever, A., Vieira, P.: Tailoring three-point functions and integrability II. Weak/strong coupling match. J. High Energy Phys. 09, 29 (2011). arXiv:1104.5501

    Google Scholar 

  41. Klose, T., McLoughlin, T.: Comments on world-sheet form factors in AdS/CFT (2013). arXiv:1307.3506

    Google Scholar 

Download references

Acknowledgements

The author thanks E. Bettelheim, N. Gromov, T. McLoughlin and S. Shatashvili and for valuable discussions. This work has been supported by European Programme IRSES UNIFY (Grant No. 269217).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Kostov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this paper

Cite this paper

Kostov, I. (2014). Semi-classical Scalar Products in the Generalised SU(2) Model. In: Dobrev, V. (eds) Lie Theory and Its Applications in Physics. Springer Proceedings in Mathematics & Statistics, vol 111. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55285-7_7

Download citation

Publish with us

Policies and ethics