New Type of \(\mathcal{N} = 4\) Supersymmetric Mechanics

  • Evgeny¬†Ivanov
  • Stepan¬†Sidorov
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 111)


We give a short account of the superfield approach based on deformed analogs of the standard \(\mathcal{N}=4,d=1\) superspace and present a few models of supersymmetric quantum mechanics constructed within this new framework. The relevant superspaces are the proper cosets of the supergroup SU(2‚ÄČ|‚ÄČ1). As instructive examples we consider the models associated with the worldline SU(2‚ÄČ|‚ÄČ1) supermultiplets (1,4,3) and (2,4,2). An essential ingredient of these models is the mass parameter m which deforms the standard \(\mathcal{N}=4,d=1\) supersymmetry to SU(2‚ÄČ|‚ÄČ1) supersymmetry.


Kinetic Term Casimir Operator Supersymmetry Transformation Fermionic State Supersymmetric Quantum Mechanic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



E.I. thanks the organizers of the tenth International Workshop ‚ÄúLie Theory and Its Applications in Physics‚ÄĚ and, especially, Vlado Dobrev for the kind hospitality in Varna.


  1. 1.
    Festuccia, G., Seiberg, N.: J. High Energy Phys. 1106, 114 (2011); Dumitrescu, T.T., Festuccia, G., Seiberg, N.: J. High Energy Phys. 1208, 141 (2012)Google Scholar
  2. 2.
    Ivanov, E., Sidorov, S.: Class. Quant. Grav. 31, 075013 (2014)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Witten, E.: Nucl. Phys. B188, 513 (1981); Nucl. Phys. B202, 253 (1982)Google Scholar
  4. 4.
    Smilga, A.V.: Phys. Lett. B585, 173 (2004)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Ivanov, E.A., Krivonos, S.O., Leviant, V.M.: J. Phys. A22, 4201 (1989)MathSciNetGoogle Scholar
  6. 6.
    Ivanov, E.A., Krivonos, S.O., Pashnev, A.I.: Class. Quant. Grav. 8, 19 (1991)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Scheunert, M., Nahm, W., Rittenberg, V.: J. Math. Phys. 18, 155 (1977)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Berezovoi, V., Pashnev, A.: Class. Quant. Grav. 13, 1699 (1996); Bellucci, S., Nersessian, A.: Phys. Rev. D64, 021702 (2001)Google Scholar
  9. 9.
    Smilga, A.V.: Nucl. Phys. B292, 363 (1987)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Ivanov, E., Lechtenfeld, O.: J. High Energy Phys. 0309, 073 (2003)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Delduc, F., Ivanov, E.: Nucl. Phys. B753, 211 (2006)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Japan 2014

Authors and Affiliations

  1. 1.Bogoliubov Laboratory of Theoretical PhysicsJINRDubnaRussia

Personalised recommendations