Advertisement

The Quantum Closet

  • Alon E. Faraggi
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 111)

Abstract

The equivalence postulate approach to quantum mechanics entails a derivation of quantum mechanics from a fundamental geometrical principle. Underlying the formalism there exists a basic cocycle condition, which is invariant under D-dimensional finite Möbius transformations. The invariance of the cocycle condition under finite Möbius transformations implies that space is compact. Additionally, it implies energy quantisation and the undefinability of quantum trajectories. I argue that the decompactification limit coincides with the classical limit. Evidence for the compactness of the universe may exist in the Cosmic Microwave Background Radiation.

Keywords

Quantum Mechanic Quadratic Differential Jacobi Equation Inhomogeneous Term Quantum Trajectory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

I thank Marco Matone for discussions and Subir Sarkar and Theoretical Physics Department at the University of Oxford for hospitality. This work is supported in part by the STFC (PP/D000416/1).

References

  1. 1.
    Faraggi, A.E., Matone, M.: Phys. Lett. B450, 34 (1999); Phys. Lett. B437, 369 (1998); Phys. Lett. A249, 180 (1998); Phys. Lett. B445, 77 (1998); Phys. Lett. B445, 357 (1998); Int. J. Mod. Phys. A15, 1869 (2000); arXiv:0912.1225Google Scholar
  2. 2.
    Bertoldi, G., Faraggi, A.E., Matone, M.: Class. Quant. Grav. 17, 3965 (2000)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Faraggi, A.E., Matone, M.: arXiv:1211.0798Google Scholar
  4. 4.
    Floyd, E.R.: Phys. Rev. D25, 1547 (1982); Phys. Rev. D26, 1339 (1982); Phys. Rev. D29, 1842 (1984); Phys. Rev. D34, 3246 (1986); Int. J. Mod. Phys. A27, 273 (1988); Found. Phys. Lett. 9, 489 (1996); Phys. Lett. A214, 259 (1996); Found. Phys. Lett. 13, 235 (2000); Int. J. Mod. Phys. A14, 1111 (1999); Int. J. Mod. Phys. A15, 1363 (2000)Google Scholar
  5. 5.
    Matone, M.: Found. Phys. Lett. 15, 311–328 (2002)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Faraggi, A.E.: Adv. High Energy Phys. 2013, 957394 (2013). arXiv:1204.3185Google Scholar
  7. 7.
    Planck Collaboration (Ade, P.A.R., et al.): Astron. Astrophys. J. (2014). arXiv:1303.5083Google Scholar
  8. 8.
    Aslanyan, G., Manohar, A.V.: J. Cosmology Astroparticle Phys. 1206, 003 (2012); Rathaus, B., Ben-David, A., Itzhaki, N.: arXiv:1302.7161; Aslanyan, G., Manohar, A.V., Yadav, A.P.S.: arXiv:1304.1811Google Scholar
  9. 9.
    Matone, M.: Phys. Scripta 86, 055007 (2012); Faraggi, A.E.: Eur. Phys. J. C72, 1944 (2012)Google Scholar
  10. 10.
    Amelino-Camelia, G., Ellis, J.R., Mavromatos, N.E., Nanopoulos, D.V., Sarkar, S.: Nature 393, 763 (1998)CrossRefGoogle Scholar

Copyright information

© Springer Japan 2014

Authors and Affiliations

  1. 1.Department of Mathematical SciencesUniversity of LiverpoolLiverpoolUK

Personalised recommendations