Skip to main content

Physical Ageing and New Representations of Some Lie Algebras of Local Scale-Invariance

  • Conference paper
  • First Online:
Lie Theory and Its Applications in Physics

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 111))

Abstract

Indecomposable but reducible representations of several Lie algebras of local scale-transformations, including the Schrödinger and conformal Galilean algebras, and their applications in physical ageing are reviewed. The physical requirement of the decay of co-variant two-point functions for large distances is related to analyticity properties in the coordinates dual to the physical masses or rapidities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the context of asymptotically flat 3D gravity, an isomorphic Lie algebra is known as BMS algebra, \(\mathfrak{b}\mathfrak{m}\mathfrak{s}_{3} \equiv \text{CGA}(1)\) [69].

  2. 2.

    The only previously known example of this had been obtained for the ageing algebra, where time-translations are excluded, see (24).

References

  1. Aizawa, N.: Some representations of plane Galilean conformal algebra. In: Dobrev, V. (ed.) “Lie theory and its applications in physics”, Springer Proc. Math. Stat. 36, 301 (2013). arxiv:1212.6288

    Google Scholar 

  2. Akhiezer, N.I.: Lectures on Integral Transforms. Translations of Mathematical Monographs, vol. 70. Kharkov University 1984/American Mathematical Society, Providence (1988)

    Google Scholar 

  3. Andrzejewski, K., Gonera, J., Kijanka-Dec, A.: Nonrelativistic conformal transformations in Langrangian formalism. Phys. Rev. D86, 065009 (2013). arxiv:1301.1531

    Google Scholar 

  4. Bagchi, A., Mandal, I.: On representations and correlation functions of Galilean conformal algebras. Phys. Lett. B675, 393 (2009). arXiv:0903.4524

    Google Scholar 

  5. Bagchi, A., Gopakumar, R., Mandal, I., Miwa, A.: CGA in 2d. J. High Energy Phys. 1008, 004 (2010). arXiv:0912.1090

    Google Scholar 

  6. Bagchi, A., Detournay, S., Grumiller, D.: Flat-space chiral gravity. Phys. Rev. Lett. 109, 151301 (2012). arxiv:1208.1658

    Google Scholar 

  7. Bagchi, A., Detournay, S., Fareghbal, R., Simón, J.: Holographies of 3D flat cosmological horizons. Phys. Rev. Lett. 110, 141302 (2013). arxiv:1208.4372

    Google Scholar 

  8. Barnich, G., Compère, G.: Class. Quant. Grav. 24, F15 (2007); 24, 3139 (2007). gr-qc/0610130

    Google Scholar 

  9. Barnich, G., Gomberoff, A., González, H.A.: Three-dimensional Bondi-Metzner-Sachs invariant two-dimensional field-theories as the flat limit of Liouville theory. Phys. Rev. D87, 124032 (2007). arxiv:1210.0731

    Google Scholar 

  10. Bray, A.J.: Theory of phase-ordering. Adv. Phys. 43, 357 (1994); Bray, A.J., Rutenberg, A.D.: Growth laws for phase-ordering. Phys. Rev. E49, R27 (1994)

    Google Scholar 

  11. Chakraborty, S., Dey, P.: Wess-Zumino-Witten model for Galilean conformal algebra. Mod. Phys. Lett. A28, 1350176 (2013). arxiv:1209.0191

    Google Scholar 

  12. Cherniha, R., Henkel, M.: The exotic conformal Galilei algebra and non-linear partial differential equations. J. Math. Anal. Appl. 369, 120 (2010). arxiv:0910.4822

    Google Scholar 

  13. Duval, C., Horváthy, P.A.: Non-relativistic conformal symmetries and Newton-Cartan structures. J. Phys. A Math. Theor. 42, 465206 (2009). arxiv:0904.0531

    Google Scholar 

  14. Gainutdinov, A., Ridout, D., Runkel, I.: Logarithmic conformal field-theory. J. Phys. A Math. Theor. 46, 490301 (2013) and the other reviews in that issue

    Google Scholar 

  15. Galajinsky, A.V.: Remark on quantum mechanics with conformal Galilean symmetry. Phys. Rev. D78, 087701 (2008). arxiv:0808.1553

    Google Scholar 

  16. Giulini, D.: On Galilei-invariance in quantum mechanics and the Bargman superselection rule. Ann. Phys. 249, 222 (1996). quant-ph/9508002

    Google Scholar 

  17. Gurarie, V.: Logarithmic operators in conformal field theory. Nucl. Phys. B410, 535 (1993). arXiv:9303160

    Google Scholar 

  18. Havas, P., Plebanski, J.: Conformal extensions of the Galilei group and their relation to the Schrödinger group. J. Math. Phys. 19, 482 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  19. Henkel, M.: Schrödinger-invariance in strongly anisotropic critical systems. J. Stat. Phys. 75, 1023 (1994). hep-th/9310081

    Google Scholar 

  20. Henkel, M.: Local scale invariance and strongly anisotropic equilibrium critical systems. Phys. Rev. Lett. 78, 1940 (1997). cond-mat/9610174

    Google Scholar 

  21. Henkel, M.: Phenomenology of local scale-invariance: from conformal invariance to dynamical scaling. Nucl. Phys. B641, 405 (2002). hep-th/0205256

    Google Scholar 

  22. Henkel, M.: On logarithmic extensions of local scale-invariance. Nucl. Phys. B869[FS], 282 (2013). arXiv:1009.4139

    Google Scholar 

  23. Henkel, M., Pleimling, M.: Nonequilibrium Phase Transitions. Ageing and Dynamical Scaling Far from Equilibrium, vol. 2. Springer, Heidelberg (2010)

    Google Scholar 

  24. Henkel, M., Rouhani, S.: Logarithmic correlators or responses in non-relativistic analogues of conformal invariance. J. Phys. A Math. Theor. 46, 494004 (2013). arXiv:1302.7136

    Google Scholar 

  25. Henkel, M., Unterberger, J.: Schrödinger invariance and space-time symmetries. Nucl. Phys. B660, 407 (2003). hep-th/0302187; Henkel, M.: Causality from dynamical symmetry: an example from local scale-invariance. In: Makhlouf, A. et al. (eds.) Springer Proc. Math. Stat. 85, 511 (2014). arxiv:1205.5901

    Google Scholar 

  26. Henkel, M., Enss, T., Pleimling, M.: On the identification of quasiprimary operators in local scale-invariance. J. Phys. A Math. Gen. 39, L589 (2006). cond-mat/0605211; Picone, A., Henkel, M.: Local scale-invariance and ageing in noisy systems. Nucl. Phys. B688[FS], 217 (2004). cond-mat/0402196

    Google Scholar 

  27. Henkel, M., Noh, J.D., Pleimling, M.: Phenomenology of ageing in the Kardar-Parisi-Zhang equation. Phys. Rev. E85, 030102(R) (2012). arXiv:1109.5022

    Google Scholar 

  28. Henkel, M., Hosseiny, A., Rouhani, S.: Logarithmic exotic conformal Galilean algebras. Nucl. Phys. B879[PM], 292 (2014). arxiv:1311.3457

    Google Scholar 

  29. Hosseiny, A., Naseh, A.: On holographic realization of logarithmic Galilean conformal algebra. J. Math. Phys. 52, 092501 (2011). arxiv:1101.2126

    Google Scholar 

  30. Hosseiny, A., Rouhani, S.: Logarithmic correlators in non-relativistic conformal field theory. J. Math. Phys. 51, 102303 (2010). arXiv:1001.1036

    Google Scholar 

  31. Hosseiny, A., Rouhani, S.: Affine extension of galilean conformal algebra in 2+1 dimensions. J. Math. Phys. 51, 052307 (2010). arXiv:0909.1203

    Google Scholar 

  32. Hotta, K., Kubota, T., Nishinaka, T.: Galilean conformal algebra in two dimensions and cosmological topologically massive gravity. Nucl. Phys. B838, 358 (2010). arxiv:1003.1203

    Google Scholar 

  33. Kim, Y.-W., Myung, Y.S., Park, Y.-J.: Massive logarithmic gravition in the critical generalised massive gravity (2013). arxiv:1301.3604

    Google Scholar 

  34. Knapp, A.W.: Representation Theory of Semisimple Groups: An Overview Based on Examples. Princeton University Press, Princeton (1986)

    MATH  Google Scholar 

  35. Kytölä, K., Ridout, D.: On staggered indecomposable Virasoro modules. J. Math. Phys. 50, 123503 (2009). arxiv:0905.0108

    Google Scholar 

  36. Lee, K.M., Lee, S., Lee, S.: Nonrelativistic superconformal M2-Brane theory. J. High Energy Phys. 0909, 030 (2009). arxiv:0902.3857

    Google Scholar 

  37. Lukierski, J.: Galilean conformal and superconformal symmetries. Phys. Atom. Nucl. 75, 1256 (2012). arxiv:1101.4202

    Google Scholar 

  38. Lukierski, J., Stichel, P.C., Zakrzewski, W.J.: Exotic Galilean conformal symmetry and its dynamical realisations. Phys. Lett. A357, 1 (2006). arXiv:0511259

    Google Scholar 

  39. Lukierski, J., Stichel, P.C., Zakrzewski, W.J.: Acceleration-extended galilean symmetries with central charges and their dynamical realizations. Phys. Lett. B650, 203 (2007). arXiv:0511259

    Google Scholar 

  40. Martelli, D., Tachikawa, Y.: Comments on Galilean conformal field theories and their geometric realization. J. High Energy Phys. 1005, 091 (2010). arXiv:0903.5184

    Google Scholar 

  41. Mathieu, P., Ridout, D.: From percolation to logarithmic conformal field theory. Phys. Lett. B657, 120 (2007). arxiv:0708.0802; Logarithmic \(\mathcal{M}(2,p)\) minimal models, their logarithmic coupling and duality. Nucl. Phys. B801, 268 (2008). arxiv:0711.3541

    Google Scholar 

  42. Nakayama, Yu.: Universal time-dependent deformations of Schrödinger geometry. J. High Energy Phys. 04, 102 (2010). arxiv:1002.0615

    Google Scholar 

  43. Negro, J., del Olmo, M.A., Rodríguez-Marco, A.: Nonrelativistic conformal groups, I & II. J. Math. Phys. 38, 3786, 3810 (1997)

    Google Scholar 

  44. Rahimi Tabar, M.R., Aghamohammadi, A., Khorrami, M.: The logarithmic conformal field theories. Nucl. Phys. B497, 555 (1997). hep-th/9610168

    Google Scholar 

  45. Ruelle, P.: Logarithmic conformal invariance in the Abelian sandpile model. J. Phys. A Math. Theor. 46, 494014 (2013). arxiv:1303.4310

    Google Scholar 

  46. Saleur, H.: Polymers and percolation in two dimensions and twisted N = 2 supersymmetry. Nucl. Phys. B382, 486 (1992). hep-th/9111007

    Google Scholar 

  47. Sastre, F., Henkel, M.: in preparation

    Google Scholar 

  48. Stoimenov, S., Henkel, M.: Non-local representations of the ageing algebra in higher dimensions. J. Phys. A Math. Theor. 46, 245004 (2013). arxiv:1212.6156; On non-local representations of the ageing algebra. Nucl. Phys. B847, 612 (2011). arxiv:1011.6315

    Google Scholar 

  49. Unterberger, J., Roger, C.: The Schrödinger-Virasoro Algebra. Springer, Heidelberg (2012)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

M.H. is grateful to the organisers of LT-10 for the kind invitation. Ce travail a reçu du support financier par PHC Rila et par le Collège Doctoral franco-allemand Nancy-Leipzig-Coventry (Systèmes complexes à l’équilibre et hors équilibre) de l’UFA-DFH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malte Henkel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this paper

Cite this paper

Henkel, M., Stoimenov, S. (2014). Physical Ageing and New Representations of Some Lie Algebras of Local Scale-Invariance. In: Dobrev, V. (eds) Lie Theory and Its Applications in Physics. Springer Proceedings in Mathematics & Statistics, vol 111. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55285-7_4

Download citation

Publish with us

Policies and ethics