N-Conformal Galilean Group as a Maximal Symmetry Group of Higher-Derivative Free Theory

Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 111)


It is shown that for N odd the N-conformal Galilean algebra is the algebra of maximal Noether symmetry group, both on the classical and quantum level, of free higher derivative dynamics.


Quantum Level Central Extension Schrodinger Equation Symmetry Generator Point Transformation 


  1. 1.
    Negro, J., del Ollmo, M.A., Rodriguez-Marco, A.: J. Math. Phys. 38, 3786 (1997)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Negro, J., del Ollmo, M.A., Rodriguez-Marco, A.: J. Math. Phys. 38, 3810 (1997)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Jackiw, R.: Phys. Today 25, 23 (1972)CrossRefGoogle Scholar
  4. 4.
    Hagen, C.R.: Phys. Rev. D5, 377 (1972)Google Scholar
  5. 5.
    Niederer, U.: Helv. Phys. Acta 45, 802 (1973)MathSciNetGoogle Scholar
  6. 6.
    Gomis, J., Kamimura, K.: Phys. Rev. D85, 045023 (2012)Google Scholar
  7. 7.
    Andrzejewski, K., Gonera, J., Maślanka, P.: Phys. Rev. D86, 065009 (2012)Google Scholar
  8. 8.
    Andrzejewski, K., Gonera, J.: Phys. Lett. B721, 319 (2013)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Galajinsky, A.V.: Nucl. Phys. B832, 586 (2010)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Galajinsky, A.V., Masterov, I.: Nucl. Phys. B866, 212 (2013)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Galajinsky. A.V., Masterov, I.: Phys. Lett. B702, 265 (2011)Google Scholar
  12. 12.
    Ostrogradski, M.: Mem. Acad. St. Petersburg 4, 385 (1850)Google Scholar
  13. 13.
    Andrzejewski, K., Gonera, J., Kosiński, P.: (2012). Preprint, arXiv:1211.3586Google Scholar

Copyright information

© Springer Japan 2014

Authors and Affiliations

  1. 1.Faculty of Physics and Applied InformaticsUniversity of ŁódźŁódźPoland

Personalised recommendations