Advertisement

Multi-Point Virtual Structure Constants and Mirror Computation of CP2-Model

  • Masao Jinzenji
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 111)

Abstract

This article is a brief summary of the results presented in the paper (Jinzenji, M., Shimizu, M.: Multi-point virtual structure constants and mirror computation of CP 2-model. Communications in Number Theory and Physics, 7(3), 411–468 (2013)) with the same title, which is a joint work with Dr. M. Shimizu.

Keywords

Modulus Space Marked Point Intersection Number Rational Curf Operator Insertion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The author would like to thank the organizers of LT-10 for giving him the opportunity to participate in the nice workshop. He also would like to thank Prof. H. Iritani for discussions.

References

  1. 1.
    Alexeev, V., Michael Guy, G.: Moduli of weighted stable maps and their gravitational descendants. J. Inst. Math. Jussieu 7(3), 425–456 (2008)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Barannikov, S.: Semi-infinite Hodge structures and mirror symmetry for projective spaces. (2000). arXiv:math/0010157Google Scholar
  3. 3.
    Ciocan-Fontanine, I., Kim, B.: Wall-crossing in genus zero quasimap theory and mirror maps. Preprint, (2013). arXiv:1304.7056Google Scholar
  4. 4.
    Coates, T., Corti, A., Iritani, H., Tseng, H.-H.: A Mirror Theorem for Toric Stacks. Preprint, (2013). arXiv:1310.4163Google Scholar
  5. 5.
    Cooper, Y., Zinger, A.: Michigan Math. J. 63(3), 571–621 (2014)MATHMathSciNetGoogle Scholar
  6. 6.
    Eguchi, T., Hori, K., Xiong, C.-S.: Gravitational quantum cohomology. Int. J. Mod. Phys. A12, 1743–1782 (1997)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Jinzenji, M.: Gauss-Manin system and the virtual structure constants. Int. J. Math. 13, 445–478 (2002)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Jinzenji, M.: Mirror map as generating function of intersection numbers: toric manifolds with two Kähler forms. Commun. Math. Phys. 323, 747–811 (2013)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Jinzenji, M., Shimizu, M.: Open virtual structure constants and mirror computation of open Gromov-Witten invariants of projective hypersurfaces. Int. J. Geom. Meth. Mod. Phys. 11, 1450005 (2014)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Jinzenji, M., Shimizu, M.: Multi-point virtual structure constants and mirror computation of CP 2-model. Communications in Number Theory and Physics, 7(3), 411–468 (2013)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Kontsevich, M.: Enumeration of rational curves via torus actions. In: Dijkgraaf, R., Faber, C., van der Geer, G. (eds.) The Moduli Space of Curves. Progress in Mathematics, vol. 129, pp. 335–368. Birkhäuser, Boston (1995)CrossRefGoogle Scholar
  12. 12.
    Kontsevich, M., Manin, Yu.: Gromov-Witten classes, quantum cohomology, and enumerative geometry. Commun. Math. Phys. 164(3), 525–562 (1994)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Marian, A., Oprea, D., Pandharipande, R.: The moduli space of stable quotients. Geom. Topol. 15(3), 1651–1706 (2011)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer Japan 2014

Authors and Affiliations

  1. 1.Department of Mathematics, Graduate School of ScienceHokkaido UniversitySapporoJapan

Personalised recommendations