f(R)-Gravity: “Einstein Frame” Lagrangian Formulation, Non-standard Black Holes and QCD-Like Confinement/Deconfinement

  • E. Guendelman
  • A. Kaganovich
  • E. Nissimov
  • S. Pacheva
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 111)


We consider \(f(R) = R + R^{2}\) gravity interacting with a dilaton and a special non-standard form of nonlinear electrodynamics containing a square-root of ordinary Maxwell Lagrangian. In flat spacetime the latter arises due to a spontaneous breakdown of scale symmetry and produces an effective charge-confining potential. In the R + R 2 gravity case, upon deriving the explicit form of the equivalent local “Einstein frame” Lagrangian action, we find several physically relevant features due to the combined effect of the gauge field and gravity nonlinearities such as: appearance of dynamical effective gauge couplings and confinement-deconfinement transition effect as functions of the dilaton vacuum expectation value; new mechanism for dynamical generation of cosmological constant; deriving non-standard black hole solutions carrying additional constant vacuum radial electric field and with non-asymptotically flat “hedge-hog”-type spacetime asymptotics.


Black Hole Gauge Field Einstein Frame Black Hole Thermodynamic Flat Spacetime 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We gratefully acknowledge support of our collaboration through the academic exchange agreement between the Ben-Gurion University and the Bulgarian Academy of Sciences. S.P. has received partial support from COST action MP-1210.


  1. 1.
    Capozziello, S., De Laurentis, M., Faraoni, V.: Open Astrono. J. 3, 49–72 (2010). arXiv:0909.4672 [gr-qc]; De Felice, A., Tsujikawa, S.: Living Rev. Rel. 13, 3–163 (2010). arXiv:1002.4928 [gr-qc]Google Scholar
  2. 2.
    Starobinsky, A.: Phys. Lett. B91, 99–102 (1980)CrossRefGoogle Scholar
  3. 3.
    Guendelman, E.: Int. J. Mod. Phys. A19, 3255 (2004). arXiv:0306162 [hep-th]Google Scholar
  4. 4.
    Gaete, P., Guendelman, E.: Phys. Lett. B640, 201–204 (2006). arXiv:0607113 [hep-th]Google Scholar
  5. 5.
    Gaete, P., Guendelman, E., Spalluci, E.: Phys. Lett. B649, 217 (2007). arXiv:0702067 [hep-th]; Guendelman, E.: Mod. Phys. Lett. A22, 1209–15 (2007). arXiv:hep-th/0703139; Guendelman, E.: Int. J. Mod. Phys. A25, 4195–4220 (2010). arXiv:1005.1421 [hep-th]; Korover, I., Guendelman, E.: Int. J. Mod. Phys. A24, 1443–1456 (2009)Google Scholar
  6. 6.
    Barriola, M., Vilenkin, A: Phys. Rev. Lett. 63, 341 (1989); Guendelman, E., Rabinowitz, A.: Phys. Rev. D44, 3152 (1991)Google Scholar
  7. 7.
    Levi-Civita, T.: Rend. R. Acad. Naz. Lincei 26, 519 (1917); Bertotti, B.: Phys. Rev. D116, 1331 (1959); Robinson, I.: Bull. Akad. Pol. 7, 351 (1959)Google Scholar
  8. 8.
    Guendelman, E., Kaganovich, A., Nissimov, E., Pacheva, S.: Int. J. Mod. Phys. A26, 5211–5239 (2011). arXiv:1109.0453 [hep-th]Google Scholar
  9. 9.
    ‘t Hooft, G.: Nucl. Phys. B (Proc. Suppl.) 121, 333–340 (2003). arXiv:0208054 [hep-th]; ‘t Hooft, G.: Progr. Theor. Phys. Suppl. 167, 144–154 (2007)Google Scholar
  10. 10.
    Eichten, E., Gottfried, K., Kinoshita, T., Kogut, J., Lane, K., Yan, T.-M.: Phys. Rev. Lett. 34, 369–372 (1975); Karliner, M., Keren-Zur, B., Lipkin, H., Rosner, J.: Ann. Phys. 324, 2–15 (2009). arXiv:0804.1575 [hep-ph]Google Scholar
  11. 11.
    Olmo, G.J., Sanchis-Alepuz, H., Tripathi, S.: Phys. Rev. D80, 024013 (2009). arXiv:0907.2787 [gr-qc]Google Scholar
  12. 12.
    Damour, T., Polyakov, A.: Nucl. Phys. B423, 532–558 (1994). arXiv:hep-th/9401069Google Scholar
  13. 13.
    Guendelman, E., Kaganovich, A., Nissimov, E., Pacheva, S.: Phys. Lett. B704, 230–233 (2011); erratum Phys. Lett. B705, 545 (2011). arXiv:1108.0160 [hep-th]Google Scholar
  14. 14.
    Wald, R.: Gemeral Relativity. University of Chicago Press, Chicago (1984); Carroll, S.: Spacetime and Geometry: An Introduction to General Relativity. Addison Wesley, San Francisco (2003); Poisson, E.: A Relativist’s Toolkit: The Mathematics of Black-Hole Mechanics. Cambridge University Press, Cambridge (2004)Google Scholar

Copyright information

© Springer Japan 2014

Authors and Affiliations

  • E. Guendelman
    • 1
  • A. Kaganovich
    • 1
  • E. Nissimov
    • 2
  • S. Pacheva
    • 2
  1. 1.Department of PhysicsBen-Gurion University of the NegevBeer-ShevaIsrael
  2. 2.Institute for Nuclear Research and Nuclear EnergyBulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations