A SUSY Double-Well Matrix Model as 2D Type IIA Superstring

  • Fumihiko Sugino
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 111)


We discuss correspondence between a simple supersymmetric matrix model with a double-well potential and two-dimensional type IIA superstrings on a nontrivial Ramond–Ramond background. In particular, we can see direct correspondence between single trace operators in the matrix model and vertex operators in the type IIA theory by computing scattering amplitudes and comparing the results in both sides.


Matrix Model Vertex Operator Liouville Theory Saddle Point Equation Saddle Point Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The author would like to thank Michael G. Endres, Tsunehide Kuroki and Hiroshi Suzuki for collaboration. He is grateful to the organizers of LT-10, especially Professor Vladimir Dobrev, for the invitation to the wonderful meeting and for warm hospitality.


  1. 1.
    Di Francesco, P., Ginsparg, P.H., Zinn-Justin, J.: Phys. Rept. 254, 1–133 (1995)CrossRefGoogle Scholar
  2. 2.
    Banks, T, Fischler, W., Shenker, S.H., Susskind, L.: Phys. Rev. D55, 5112–5128 (1997)MathSciNetGoogle Scholar
  3. 3.
    Ishibashi, N., Kawai, H., Kitazawa, Y., Tsuchiya, A.: Nucl. Phys. B498, 467–491 (1997)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Dijkgraaf, R., Verlinde, E.P., Verlinde, H.L.: Nucl. Phys. B500, 43–61 (1997)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Kuroki, T., Sugino, F.: Nucl. Phys. B830, 434–473 (2010)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Kuroki, T., Sugino, F.: Nucl. Phys. B844, 409–449 (2011)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Kostov, I.K.: Mod. Phys. Lett. A4, 217–226 (1988)MathSciNetGoogle Scholar
  8. 8.
    Kostov, I.K., Staudacher, M.: Nucl. Phys. B384, 459–483 (1992)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Kostov, I.K.: In: Cargese 1990, Proceedings, Random Surfaces and Quantum Gravity, pp. 135–149 (1990)Google Scholar
  10. 10.
    Gaiotto, D., Rastelli, L., Takayanagi, T.: JHEP 0505, 029 (2005)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Kuroki, T., Sugino, F.: Nucl. Phys. B867, 448–482 (2013)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Knizhnik, V.G., Polyakov, A.M., Zamolodchikov, A.B.: Mod. Phys. Lett. A3, 819–826 (1988)CrossRefMathSciNetGoogle Scholar
  13. 13.
    David, F.: Mod. Phys. Lett. A3, 1651–1656 (1988)CrossRefGoogle Scholar
  14. 14.
    Distler, J., Kawai, H.: Nucl. Phys. B321, 509–527 (1989)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Kutasov, D., Seiberg, N.: Phys. Lett. B251, 67–72 (1990)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Murthy, S.: JHEP 0311, 056 (2003)CrossRefGoogle Scholar
  17. 17.
    Ita, H., Nieder, H., Oz, Y.: JHEP 0506, 055 (2005)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Grassi, P.A., Oz, Y.: Non-critical covariant superstrings (2005). arXiv:hep-th/0507168Google Scholar
  19. 19.
    Kuroki, T., Sugino, F.: JHEP 1403, 006 (2014)CrossRefGoogle Scholar
  20. 20.
    Seiberg, N.: Prog. Theor. Phys. Suppl. 102, 319–349 (1990)CrossRefMathSciNetGoogle Scholar
  21. 21.
    Di Francesco, P., Kutasov, D.: Nucl. Phys. B375, 119–172 (1992)CrossRefGoogle Scholar
  22. 22.
    Endres, M.G., Kuroki, T., Sugino, F., Suzuki, H.: Nucl. Phys. B876, 758–793 (2013)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Japan 2014

Authors and Affiliations

  1. 1.Okayama Institute for Quantum PhysicsOkayamaJapan

Personalised recommendations