Polylogarithms and Multizeta Values in Massless Feynman Amplitudes

  • Ivan Todorov
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 111)


The last two decades have seen a remarkable development of analytic methods in the study of Feynman amplitudes in perturbative quantum field theory. The present lecture offers a physicists’ oriented survey of Francis Brown’s work on singlevalued multiple polylogarithms, the associated multizeta periods and their application to Schnetz’s graphical functions and to x-space renormalization. To keep the discussion concrete we restrict attention to explicit examples of primitively divergent graphs in a massless scalar QFT.


Wigner Function Graphical Function Internal Vertex Iterate Integral Feynman Amplitude 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



It is a pleasure to thank Francis Brown, Pierre Cartier and Oliver Schnetz for enlightening discussions and pertinent remarks. The author thanks IHES for hospitality and support during the course of this work and Cécile Gourgues for her expert and efficient help.


  1. 1.
    Bloch, S.L.: Applications of the dilogarithm function in algebraic K-theory and algebraic geometry. In: Proceedings of the Internat. Symp. on Alg. Geometry, Kinokuniya, Tokyo (1978)Google Scholar
  2. 2.
    Broadhurst, D.J.: Summation of an infinite series of ladder diagrams. Phys. Lett. B307, 132–139 (1993)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Broadhurst, D.J., Kreimer, D.: Associatioon of multiple zeta values with positive knots via Feynman diagrams up to 9 loops. Phys. Lett. B393, 403–412 (1997). arXiv:hep-th/9609128Google Scholar
  4. 4.
    Brown, F.: Polylogarithmes multiples uniformes en une variable. C. R. Acad. Sci. Paris Ser. I 338, 522–532 (2004)CrossRefGoogle Scholar
  5. 5.
    Brown, F.: Iterated Integrals in Quantum Field Theory. Villa de Leyva, Columbia Notes (2009)Google Scholar
  6. 6.
    Brown, F.: Mixed Tate motives over Z. Ann. Math. 175(1), 949–976 (2012). arXiv:1102.1312 [math.AG]; On the decomposition of motivic multiple zeta values. arXiv:1102.1310 [math.NT]Google Scholar
  7. 7.
    Brown, F.: Depth-graded motivic multiple zeta values (2013). arXiv:1301.3053 [math.NT]Google Scholar
  8. 8.
    Brown, F.: Single-valued periods and multiple zeta values (2013). arXiv:1309.5309 [math.NT]Google Scholar
  9. 9.
    Brown, F., Schnetz, O.: Proof of the zig-zag conjetcure (2012). arXiv:1208.1890 [math.NT]Google Scholar
  10. 10.
    Cartier, P.: Fonctions polylogarithmes, nombres polyzêtas et groupes pro-unipotents, Séminaire Bourbaki 53ème année n. 885, Astérisque 282, 137–173 (2002)MathSciNetGoogle Scholar
  11. 11.
    Cartier, P.: On the double zeta values. Adv. Stud. Pure Math. 63, 91–119 (2012)MathSciNetGoogle Scholar
  12. 12.
    Chen, K.T.: Iterated path integrals. Bull. Am. Math. Soc. 83, 831–879 (1977)CrossRefMATHGoogle Scholar
  13. 13.
    Chetyrkin, K.G., Kataev, A.I., Tkachov, F.V.: New approach to evaluation of multiloop Feynman integrals: the Gegenbauer polynomial x-space technique. Nucl. Phys. B174, 345–377 (1980)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Deligne, P.: Multizêtas, d’après Francis Brown, Séminaire Bourbaki 64ème année n.1048 Astérisque 352 (2013)Google Scholar
  15. 15.
    Del Duca, V., Dixon, L.J., Duhr, C., Pennington, J.: The BFKL equation, Mueller-Navelet jets and single-valued harmonic polylogarithms. arXiv:1309.6647 [hep-ph]Google Scholar
  16. 16.
    Drummond, J.M., Henn, J.G., Korchemsky, P., Sokatchev, E.: Dual superconformal symmetry of scattering amplitudes in N = 4 super-Yang–Mills theory. Nucl. Phys. B828, 317–374 (2010). arXiv: 0807.1095 [hep-th]; Drummond, J.M., Henn, J., Smirnov, V.A., Sokatchev, E.: Magic identities for conformal four-point integrals. J. High Energy Phys. 0701, 064 (2007). hep-th/0607160v3Google Scholar
  17. 17.
    Drummond, J., Duhr, C., Eden, B., Heslop, P., Pennington, J., Smirnov, V.A.: Leading singularities and off shell conformal integrals. J. High Energy Phys. 1308, 133 (2013). arXiv:1303.6909v2 [hep-th]Google Scholar
  18. 18.
    Duhr, C., Gangl, H., Rhodes, J.R.: From polygons and symbols to polylogarithmic functions, 75 pp. (2011). arXiv:1110.0458 [math-ph]Google Scholar
  19. 19.
    Dyson, F.J.: Missed opportunities. Bull. Am. Math. Soc. 78(5), 635–652 (1972)CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Gaiotto, D., Maldacena, J., Sever, A., Vieira, P.: Pulling the straps of polygons. J. High Energy Phys. 1112, 011 (2011). arXiv:1102.0062 [hep-th]Google Scholar
  21. 21.
    Goncharov, A., Spradlin, M., Vergu, C., Volovich, A.: Classical polylogarithms for amplitudes and Wilson loops. Phys. Rev. Lett. 105, 151605 (2010). arXiv:1006.5703v2 [hep-th]Google Scholar
  22. 22.
    Kinoshita, T.: Fine structure constant, electron anomalous magnetic moment, and quantum electrodynamics (2010).
  23. 23.
    Lalin, M.N.: Polylogarithms and hyperbolic volumes, Fribourg (2007)Google Scholar
  24. 24.
    Milnor, J.W.: Hyperbolic geometry: the first 150 years. Bull. Am. Math. Soc. 6, 1 (1982)CrossRefMathSciNetGoogle Scholar
  25. 25.
    Nikolov, N.M., Stora, R., Todorov, I.: Euclidean configuration space renormalization, residues and dilation anomaly. In: Dobrev, V. (ed.) Proceedings of the Varna Workshop Lie Theory and Its Applications in Physics (LT9), pp. 127–147. Springer, Tokyo/Heidelberg (2013). CERN-TH-PH/2012-076Google Scholar
  26. 26.
    Nikolov, N.M., Stora, R., Todorov, I.: Renormalization of massless Feynman amplitudes in configuration space. Rev. Math. Phys. 26(4), 143002 (2014). arXiv:1307.6854 [hep-th]Google Scholar
  27. 27.
    Remiddi, E., Vermaseren, J.A.M.: Harmonic polylogarithms. Int. J. Mod. Phys. A15, 725–754 (2000). arXiv:hep-ph/9905237Google Scholar
  28. 28.
    Schnetz, O.: Quantum periods: a census of ϕ 4-transcendentals. Commun. Number Theory Phys. 4(1), 1–46 (2010). arXiv:0801.2856v2 [hep-th]Google Scholar
  29. 29.
  30. 30.
    Schnetz, O.: Graphical functions and single-valued multiple polylogarithms (2013). arXiv:1302.6445 [math.NT]Google Scholar
  31. 31.
    Styer, D.: Calculation of the anomalous magnetic moment of the electron (2012).
  32. 32.
    Todorov, I.: Studying quantum field theory. Bulg. J. Phys. 42, 93–114 (2013). arXiv:1311.7258 [math-ph], IHES/P/13/38Google Scholar
  33. 33.
    Ussyukina, N.I., Davydychev, A.I.: An approach to the evaluation of three- and four-point ladder diagrams. Phys. Lett. B298, 363–370 (1993); Exact results for three- and four-point ladder diagrams with an arbitrary number of rungs. Phys. Lett. B305, 136–143 (1993)Google Scholar
  34. 34.
    Waldschmidt, M.: Lectures on multiple zeta values IMSC 2011, Updated September 29 (2012)Google Scholar
  35. 35.
    Zagier, D.: The dilogarithm function. In: Cartier, P., Julia, B., Moussa, P., Vanhove, P. (eds.) Frontiers in Number Theory, Physics and Geometry II, pp. 3–65. Springer, Berlin (2006)Google Scholar

Copyright information

© Springer Japan 2014

Authors and Affiliations

  1. 1.Institut des Hautes Études ScientifiquesBures-sur-YvetteFrance
  2. 2.Institute for Nuclear Research and Nuclear EnergyBulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations